本数据集为2021年的祁连山区域的人类活动参数,包括祁连山区域2021年的30m耕地产品和祁连山区域2021年的30m建设用地分布产品。该产品来源于祁连山区域2021年30m的土地覆盖分类产品。该产品以2020年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2020年土地覆盖分类产品的延续。1985-2020年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2021年的土地利用产品为1年1期。
杨爱霞, 仲波
本数据集为祁连山区域2021年的30m土地覆盖分类产品。该产品以2021年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2020年土地覆盖分类产品的延续。1985-2020年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2021年的土地利用产品为1年1期。
杨爱霞, 仲波, 角坤升, 吴俊君
1)在山区,由于复杂的地形地质背景条件,在降雨、融雪、地震和人类工程活动等外界因子触发下,极易发生滑坡,导致生命财产损失和自然环境的破坏。为了满足工程场地建设的安全性、土地利用规划的合理性和灾害减缓的迫切性需求,需要展开区域滑坡敏感性评价。当利用多种不同的方法得到多个不同评价结果时,如何有效的将这些结果进行组合以得到最优的预测是当前仍未很难解决的一个技术难题,在确定某个区域滑坡敏感性评价的最优策略和最佳方法的操作执行方面仍然十分欠缺。2)利用传统经典的多元分类技术,通过对模型结果评估和误差量化,将最优评价模型进行组合,快速实现区域滑坡敏感性高质量评价。源代码基于R语言软件平台编写,用户需要单独准备一个本地文件夹,用来读取和储存软件运行结果,用户需要记住文件夹储存路径并在软件源代码中进行相应的设置。3)源代码设计了两种不同的模式来展示模型运行结果,以文本和图形格式的标准格式分析结果输出和需要空间数据并以标准地理格式展示的地理空间模式,4)适用于所有对滑坡风险评价工作感兴趣的人群。该软件能够为大专院校经验丰富的科研人员高效使用,也可以被国土环境规划、管理领域的政府人员和公益组织方便快捷、正确可靠的获取滑坡敏感性分级结果。可服务于地区土地利用规划,灾害风险评价与管理,极端诱发事件(地震或降雨等)下的灾害应急,以及对滑坡监测设备的遴选和预警网络的合理有效布置和运行具有重大的现实指导意义,在滑坡发育严重的地区都可以推广应用
杨仲康
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
三江源地区土地沙漠化分布数据集源自青藏高原沙漠化格局与变化数据,本数据基于遥感影像、辅助数据等多源数据集成得到。主要使用和参考的数据包括:1)遥感影像数据:选取Landsat提取6 ~ 9月份影像作为青藏高原土地沙漠化监测的主要数据源,共选择1980年、1990年、2000年、2010年和2015年五期影像监测土地沙漠化, 2)辅助数据:地形数据、土壤类型数据、植被类型数据、土地利用数据和Google Earth影像等辅助数据是沙漠化土地解译过程中的重要数据;3)沙漠化指征体系,以风蚀速率、流沙面积占地百分比、植被覆盖度为三个主要指标;4)三江源地区面积为382312 km2,该数据集是从青藏高原土地沙漠化分布数据中将三江源部分裁切出来,以便单独开展三江源地区的研究分析;5)本数据格式为Shapefile格式。推荐使用arcmap打开数据。
南维鸽
本数据集包括1985-2018年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的城市建设用地变化的逐年数据。该数据空间分辨率为30m,时间分辨率为一年,源自基于Landsat遥感影像提取的1985-2018年全球人工不透水面(GAIA)变化数据(宫鹏等)。研究者对该数据在1985至2015年间每隔5年的7组数据进行了评估,其平均整体精度超过90%,并且是唯一跨越30年的城市建设用地数据集。
徐晓凡, 谈明洪
瓜达尔深水港位于巴基斯坦俾路支省西南部瓜德尔城南部,在巴基斯坦靠近伊朗一侧,东距卡拉奇约460km,西距巴基斯坦伊朗边境约120km,南临印度洋的阿拉伯海,向西则是霍尔木兹海峡和红海,与阿曼首都马斯喀特(Muscat)遥遥相对,是一个极具战略地位的海港。 本数据为瓜达尔及其周边土地覆盖数据,数据源于GlobeLand30 (Chen, 2014),数据空间分辨率为30米,数据格式为tiff。 GlobeLand30数据集研制所使用的分类影像主要包括美国陆地资源卫星(Landsat)的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星(HJ-1)多光谱影像,采用基于像元对象知识(POK-based)的分类方法 (Chen, 2015),总体精度为83.50%,Kappa系数0.78 (Xie, 2015)。
吴骅
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
数据集包含2000年,2010年,2018年青藏高原县级理论载畜量数据和1980年, 1990年, 2000年, 2010年, 2017年县级超载程度。基于地理科学与资源研究所具有自主知识产权的生态水文动力学模型VIP(Vegetation interface process) 模拟的NPP数据计算了产草量数据(1km分辨率),按照县行政区域尺度,计算县域产草量,并根据载畜量计算标准(NY/T 635-2015)计算得到县域范围内的理论载畜量。基于县级实际载畜量数据,计算了超载程度。数据将为草地恢复、管理和利用策略的制定提供借鉴。
莫兴国
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
依据多土地覆被类型数据包括有欧空局全球陆地覆盖数据(ESA CCI-LC,300m栅格)、清华大学全球土地覆被数据(FROM-GLC,30m栅格)和美国NASA的LP DAAC 中心的MODIS全球土地覆被数据(MCD12Q1,300m栅格)等3个土地覆被产品数据。个别类别土地覆被数据包括有美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本宇宙航空研究开发机构JAXA的全球林地数据(PALSAR/PALSAR-2,25m)、欧盟联合研究中心(JRC, EC)的全球水体数据(GSWD,Global Surface Water Data)和中山大学基于Google earth engine提取的全球城市用地数据(GULM,Global Urban Land Map)。构建了“一带一路”区域LUC分类系统以及其余数据分类系统的转换规则,构建土地覆被分类置信度函数和地类融合规则,进行土地覆被产品融合与修正,完成了“一带一路”核心国家2015年土地利用数据(V1.0)。
许尔琪
本数据集是2015年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
本数据集是2011年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
本数据集是2012年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累而建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集包括1980年代末期,1990年、1995年、2000年、2005年、2010年,2015年七期,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据缺少南海部分岛屿数据。 空间分辨率1公里,投影参数:Albers_Conic_Equal_Area 中央经线105,标准纬线1: 25,标准纬线2: 47。 中国土地利用现状遥感监测数据库是目前我国精度比较高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
中国科学院资源环境科学数据中心(http://www.resdc.cn/)
基于Google earth高清卫星影像,根据青藏高原矢量图,通过目视解译获取青藏高原全区2018年设施农业用地。所用影像拍摄时间集中于2017.11—2018.11。其中,基于2018年影像提取的设施农业面积约占总面积的70.47%;基于2017年11月以来拍摄影像提取的设施农业面积占比更是高达86.87%;部分地区影像拍摄时间相对较早,但多人烟稀少,没有或很少有设施农业分布,对研究结果影响不大。该数据有利于充分摸清青藏高原全区设施农业的空间分布情况,有利于当地设施农业空间规划调整。
吕昌河, 魏慧
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件