南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
江利明
本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
土壤水分是全球观测系统提出的关键气候变量之一,在陆气相互作用中起着重要作用。植被光学厚度是微波辐射传输过程中衡量植被衰减特性的关键参数,在植被水力学、植被物候学和生物量研究领域中有着广泛应用。 本数据集基于AMSR-E和AMSR2交叉定标亮度温度数据,使用多通道协同反演算法(MCCA)获得了全球第一套具有极化差异的多波段(C/X/Ku)植被光学厚度产品及土壤水分产品。该算法(MCCA)能综合考虑多个通道之间的物理关系,能同时反演出土壤水分和具有频率差异,极化差异的植被光学厚度。 本数据集使用了来自国际土壤水分观测网络和美国农业部发布的共25个土壤水分密集观测站网进行验证,结果表明,在目前公开的与AMSR-E/2相关的土壤水分数据集中,MCCA土壤水分的无偏均方根误差(ubRMSE)最小。此外,MCCA反演得到的具有频率和极化差异的植被光学厚度数据可为植被生理过程中的水通量研究提供新的见解。
胡路, 赵天杰, 居为民, 彭志晴, 姚盼盼, 施建成
基于我国高分一号及二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出青藏工程走廊冻融灾害分布数据。数据地理范围为青藏公路西大滩至安多段沿线40km范围。数据包括热融湖塘分布数据及热融滑坡分布数据。该数据集可为青藏工程走廊冻融灾害的研究工作及工程防灾减灾提供数据基础。青藏公路西大滩至安多段沿线40km范围冻融灾害空间分布基于国产高分二号影像数据自制。首先,利用深度学习方法从高分二号数据中提取泥流阶地区块;然后,利用ArcGIS进行人工编辑,将数据解译后合在一张图上可现实。
牛富俊, 罗京
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
本数据集来源于论文:(1)He, C., Liu, Z., Tian, J., & Ma, Q., (2014). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Global change biology, 20(9), 2886-2902.(2)Xu, M., He, C., Liu, Z., Dou, Y. (2016). How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 11(5): e0154839。本数据集的制作流程主要包括:(1)对夜间灯光数据、植被指数数据和地表温度数据进行预处理,得到了1992-2020年覆盖全国范围的多源遥感数据;(2)通过经济分区、选取训练样本、支持向量机分类和年际序列订正,获取城市建成区动态信息。利用Landsat TM/ETM+数据进行精度评价,得到Kappa系数为0.60,总体精度为92.62%。该数据集已用于评估城市扩展过程对自然生境和耕地的影响,能够为理解中国城市扩展过程及其影响提供数据支持。
何春阳, 刘志锋, 许敏, 卢文路
作物物候是指农作物达到关键生育期时对应的日期。华北平原的主要种植模式是冬小麦和夏玉米轮作,冬小麦和夏玉米关键物候期的变化反映了其生长发育对气候条件和生产管理措施的响应情况和适应性,是评估该地区作物生长状态、灌溉耗水情况的关键参数。 本研究以华北平原冬小麦-夏玉米稳定种植区为研究范围,使用1982-2015年GIMMS3g NDVI数据,综合曲线最大值、最小值、斜率、百分量值等多个特征参数,提取了冬小麦和夏玉米的关键物候期:开始日(SOS),峰值日(PEAK)和结束日(EOS)。提取物候与农气站点记录物候期进行对比,R²在0.9以上,准确度高。(详细过程请见参考文献) 该物候数据集可应用于该地区计算冬小麦和夏玉米生产力、对气候变化响应、灌溉耗水量估算等相关研究。
雷慧闽
华北平原是我国重要的粮食产区,耕地面积广大,种植结构复杂,准确识别该地区典型农作物分布,及时追踪种植结构的动态变化,是检测作物生长、评估作物灌溉耗水和优化农业水资源配置的重要基础。 本研究使用遥感MOD13Q1 NDVI数据,经傅里叶变换后选取0-5级谐波的振幅和初相位作物分类底图。基于现场调研的实测样本点和最大似然监督分类,识别了2001-2018年华北平原6类典型作物(冬小麦-夏玉米、冬小麦-水稻、其他双峰类作物、春玉米、棉花、其他单峰类作物)的种植区分布。识别结果经过混淆矩阵、与县级统计年鉴的冬小麦播种区比较以及与Landsat提取冬小麦占比比较进行了精度评价,均表现良好,准确度高。(详细过程请看参考文献) 数据可被应用于华北平原作物生产、灌溉耗水估算、地下水保护等相关研究分析。
雷慧闽
积雪是冰冻圈的重要组成要素,是全球变化与地球系统科学研究中不可或缺的变量。积雪的分布范围和物候信息是衡量积雪变化特征的重要指标,也是寒区水文模型中融雪径流模拟的重要参数。亚洲高山区是许多国际性河流的发源地,也是全球气候变化研究的热点区;该地区冰雪变化将引发的水资源减少、极端天气事件增多、灾害频发等生态和环境问题,已受到各国的广泛关注。因此,准确获取长时序的亚洲高山区积雪分布与积雪物候数据对气候变化研究、水资源管理以及灾害预警与防治至关重要。 亚洲高山区逐日无云MODIS归一化积雪指数(NDSI)产品(2000-2021,500 m)是在MODIS逐日积雪产品(包括Terra上午星数据产品MOD10A1和Aqua下午星数据产品MYD10A1,C6版本)的基础上,通过同一天上下午星数据融合以及三次样条函数插值去云算法处理后得到;其中,在2000-2002年只有上午星数据产品MOD10A1时,则直接采用三次样条函数插值去云算法处理。水文年2002-2020的积雪物候数据集是基于逐水文年内的无云MODIS NDSI产品制备而成,包括积雪开始日期(SOD)、积雪结束日期(SED)和积雪持续日数(SDD)3个参数。本数据集具有可靠的精度。
唐志光, 邓刚
大气水汽是研究水循环的重要参数,在全球气候变暖的背景下,为了更好地研究大气水汽对水循环的影响,构建了空间分辨率为0.25°的全球日尺度AMSR-E/AMSR2全天候大气可降水(Total Precipitable Water,TPW)数据集。数据集中,陆地上空的TPW主要有我们新开发的基于AMSR-E、AMSR2的18.7和23.8GHz亮温数据反演算法获取;海洋上空TPW数据融合了AMSR-E/AMSR2官方TPW产品。作为后处理,为了消除AMSR-E TPW和AMSR2 TPW之间的系统性偏差,以AIRSX2RET TPW为基准,使用直方图匹配方法分别对AMSR-E和AMSR2的TPW数据在全球尺度上进行了系统偏差校正,保证数据的连续性,最终得到全球日尺度AMSR-E和AMSR2 TPW全天候数据集。其中,AMSR-E数据时间范围为2002年7月8日至2011年9月27日,AMSR2数据时间范围为2013年1月1日至2017年8月31。每个日期下均包含升轨和降轨两个文件,数据格式为Geotiff。数据层数为2,第一个层为TPW数据,单位为mm,第二层为时间信息,表示以UTC为时间基准的像元观测时间距离当天0时0分0秒所经过的秒数。数据集具有可靠的质量,通过与全球SuomiNET GPS TPW验证分析,数据集的均方根误差为3.5-5.2mm。由于大气可降水是影响地表遥感重要的地球物理参数,对地球的气候变化也有重要影响,故此数据可用于气候变暖的背景下大气水汽对水循环的影响、大气水资源的评估以及大气校正等方面的研究。
姬大彬, 施建成, 胡斯勒图, 李薇, 张红星, 尚华哲
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
中国区域354座城市通用热舒适度指数白天和夜晚的月均值数据。该数据时间范围包括2012年1月至2021年12月,时间分辨率为逐月,空间分辨率为1km。 该数据主要是基于MODIS数据集提供的MYD07大气廓线数据和MYD11地表温度数据,并融合了ERA5再分析数据提供的风速数据,最终计算得的了中国区域范围内354座城市的通用热气候指数(Universal Thermal Climate Index, UTCI)数据值。其中城市边界采用Global Urban Boundary-GUB提供的2018年城市边界数据进行划定,为保持空间分辨率的统一,所有数据空间分辨率全部重采样至1km。 在全球变暖和快速城市化的背景下,该数据有利于研究城市热舒适度的时空变化规律及相关分析。
王晨光, 占文凤
及时准确地监测绿洲的时空格局和动态变化对干旱区社会经济的可持续发展至关重要。本研究基于1986年、1990年、1995年、2000年、2005年、2010年、2015年、2018年、2020年共计9期Landsat TM/OLI影像数据,采用OSTU阈值法和人工目视解译相结合的方法获取1986~2020年河西走廊绿洲分布数据,并结合高分辨率Google Earth影像和实地验证数据基于混淆矩阵的方法建立随机样点验证绿洲提取结果的准确性。河西走廊绿洲数据的总体精度超过94%,Kappa系数超过0.88。本数据集可以为河西绿洲生态环境保护提供数据支持。
颉耀文, 张学渊, 刘怡阳, 黄晓君, 李汝嫣, 宗乐丽, 肖敏, 秦梦瑶
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
冰川表面反照率是冰川质量和能量平衡过程的一个关键参数。该数据内容包括亚洲高山区2000-2020消融期内(6月-8月)每年的年平均冰川表面反照率和年最小冰川表面反照率。基于MODIS 500m分辨率的每日积雪反照率产品(包括MOD10A1和MYD10A1),首先对上午星数据MOD10A1和下午星数据MYD10A1采用均值合成,其次采用±2天窗口内的数据采用均值滤波进行插值和空值填补,最后基于最小和平均值方法得到亚洲高山区冰川的年平均反照率和年最小反照率。相比较原始数据,数据的精度和覆盖程度都得到极大的提高。可为研究冰川反照率与物质平衡之间的关系以及建立相关冰川模型提供冰面反照率输入数据。
肖瑶
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件