三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
青藏高原地面PM2.5浓度数据以日期命名(YYYYMMDD)。其中每个nc文件包含一天的数据,里面包含该区域的PM2.5浓度,经纬度以及时间信息(对应数据中的变量名为PM2.5,lon,lat,time)。数据反演依赖美国国家航空航天局NASA发布的再分析资料MERRA-2和多角度成像光谱仪MISR的AOD产品。MERRA-2主要基于NASA的地球系统模型版本5(GEOS 5)。该算法能够同化所有原位和遥感大气数据。本数据主要用到MERRA-2的气溶胶场。这是首次将气象和气溶胶观测联合同化为全球同化系统的年代际再分析资料。MISR是通过指向9个不同方向的摄像机观察地球,可以知道在自然条件下散射到不同方向的辐射。本数据算法主要用到的数据产品有MERRA-2 气溶胶分析产品(M2T1NXAER)和MISR level 3版本四全球气溶胶产品(MIL3DAEN_4)。首先用MERRA-2提供的气溶胶信息计算得到每个格点中的PM2.5与AOD的比值,然后用MISR的AOD乘以该比值即为该格点的PM2.5浓度。利用该方法得到的PM2.5浓度平均预测误差在20微克/立方米以内。相应的PM2.5产品也可以为评估青藏高原地区颗粒物污染状况提供参考。
傅迪松
大气水汽是研究水循环的重要参数,在全球气候变暖的背景下,为了更好地研究大气水汽对水循环的影响,构建了空间分辨率为0.25°的全球日尺度AMSR-E/AMSR2全天候大气可降水(Total Precipitable Water,TPW)数据集。数据集中,陆地上空的TPW主要有我们新开发的基于AMSR-E、AMSR2的18.7和23.8GHz亮温数据反演算法获取;海洋上空TPW数据融合了AMSR-E/AMSR2官方TPW产品。作为后处理,为了消除AMSR-E TPW和AMSR2 TPW之间的系统性偏差,以AIRSX2RET TPW为基准,使用直方图匹配方法分别对AMSR-E和AMSR2的TPW数据在全球尺度上进行了系统偏差校正,保证数据的连续性,最终得到全球日尺度AMSR-E和AMSR2 TPW全天候数据集。其中,AMSR-E数据时间范围为2002年7月8日至2011年9月27日,AMSR2数据时间范围为2013年1月1日至2017年8月31。每个日期下均包含升轨和降轨两个文件,数据格式为Geotiff。数据层数为2,第一个层为TPW数据,单位为mm,第二层为时间信息,表示以UTC为时间基准的像元观测时间距离当天0时0分0秒所经过的秒数。数据集具有可靠的质量,通过与全球SuomiNET GPS TPW验证分析,数据集的均方根误差为3.5-5.2mm。由于大气可降水是影响地表遥感重要的地球物理参数,对地球的气候变化也有重要影响,故此数据可用于气候变暖的背景下大气水汽对水循环的影响、大气水资源的评估以及大气校正等方面的研究。
姬大彬, 施建成, 胡斯勒图, 李薇, 张红星, 尚华哲
云覆盖着70%的地球表面,是影响大气辐射收支平衡以及气候变化的重要因素之一,同时也是全球水循环的重要组成部分。考虑到东亚-太平洋(EAP)地区缺乏具有高时空分辨率的可靠云参数数据,利用下一代地球静止卫星Himawari-8开发了2016年、时间辨率为1h、空间分辨率为0.1°、0.25°、1°的云参数数据集。本数据集所提供的云产品包括宏观参数和微观参数,其中宏观参数包括:云量(CF)、云检测(CM)、云相态检测(CP)、云顶压强(CTP)、云顶高度(CTH)、云顶温度(CTT)、云类型(CT)、过冷水检测(SWC);微观参数包括:云光学厚度(COT)、云粒子有效半径(CER)。所生产的这些云参数在精度方面均达到了国际先进水平。
胡斯勒图
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度,气溶胶类型根据气溶胶光学厚度AOD计算得到。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。按照AOD经验阈值(AOD:0~0.2,清洁型;0.2~0.6,城市或工业型;大于0.6,沙尘型。)分类将气溶胶类型标记为三种:清洁型(1)、城市或工业型(2)和沙尘型(3)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。
叶爱中
该数据集利用机器学习算法,生成了一套全球陆地高分辨率边界层高度数据集,时间范围为2017至2021年,其时间、空间分辨率分别为3小时和0.25º。机器学习以ERA5再分析资料和GLDAS地表参数为输入,高分辨率探空资料与ERA5获得的边界层高度之差作为输出,以此来建立训练模型。输入参量包括地形标准差、感热通量、潜热通量、向下长波辐射、向下短波辐射、总降水率、地表压强、地表温度等18个参数。无线电探空数据集包含全球370个站的约180万个剖面。总体而言,与从无线电探空仪反演得到的边界层高度相比,该数据集在时空覆盖和精度方面表现突出。该数据集对大量的科学研究和应用都有重要意义,包括空气质量、对流触发、气候和气候变化等。
郭建平, 张健, 邵佳
本数据集包含了2004-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.0.1数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
本数据集包含了2012-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.1数据,是v2.0.1错误修复后的新版本数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
数据内容:咸海流域2015年-2018年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件