基于雅鲁藏布江流域内已有的262个雨量筒逐月降水数据、WRF和ERA5降水数据,利用随机森林学习算法重建了雅鲁藏布江流域及7个子流域1951–2020年10km分辨率的逐日降水数据。该数据经过了站点单点验证,在年和季节变化方面表现较好。并且该数据经过了水文模型反向评估,利用该数据驱动VIC水文模型模拟了雅江流域及各子流域径流变化,并利用实测径流、MODIS及冰川编目数据进行验证。该数据在原有第一版基础上考虑了降水空间分配特征,能更好描述高山区降水特征。
孙赫
该数据集提供了位于拉萨市区北郊的夺底沟径流实验站的流量、降水、气温监测数据。其中,径流监测站点2处,提供了2019年6月至12月的径流数据,数据步长为10分钟;降水监测站点5处,提供了2018-2021年的降水数据,数据步长为1日;气温监测站点8处,提供了2018-2021年的气温数据,数据步长为30分钟。径流数据、降水和气温数据均为实测数据。该数据集可以为青藏高原的水文和气象过程研究提供数据支撑。
刘金涛
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
张冉
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、格尔木站、天山站、祁连山站、若尔盖站(共2个点,西北院和成都生物所)、玉龙雪山站、那曲站(含3个站点,青藏所、西北院和地理所)、海北站、三江源站、申扎站、拉萨站、青海湖站)2020年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和通量等数据) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。另外,该数据集是对中国高寒区地表环境与观测网络气象数据(2019)的更新。
朱立平
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
本数据为降水数据,是热带降水测量任务TRMM(Tropical Rainfall Measuring Mission)逐月降水产品TRMM 3B43,融合青藏高原为主主体的范围区域(25~40°N;73~105°E)内332个气象站点降水数据,该气象站降水数据源自中国气象局国家气象信息中心。本数据集采用站点3°插值优化变分订正方法计算获得的再分析数据集。时间跨度为1998年1月至2018年12月的月样本资料,空间覆盖范围是25~40°N;73~105°E,空间分辨率为1°*1°。
徐祥德, 孙婵
该数据集包括2000–2009 和 2090–2099两个时段的NEX-GDDP (NASA Earth Exchange Global Daily Downscaled Projections)的每日最低气温(Tmin)、最高气温数据(Tmax)和降水量(PPT)数据(v1.0),日最高温和日最低温单位为K;降水量单位为kgm-2s-1;背景填充值为-999。 本数据集在原始数据基础上裁取青藏高原范围内像元,原始数据于2020年8月下载自 https://portal.nccs.nasa.gov/datashare/NEXGDDP/BCSD/。 NEX-GDDP数据集由CMIP5(Coupled Model Intercomparison Project Phase 5)历史气候和RCP(Representative Concentration Pathways)4.5情景模式下运行的大气环流模型(General Circulation Models)得到,共包括21个大气环流模型;其中 2000–2005为历史气候情景,2006–2009和2090–2099为RCP 4.5情景。原始数据相关说明请参见:https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp。
沈妙根, 姜楠
改进频率分布和风速纠正的青藏高原格点降水数据集是一套适合青藏高原,经过风引起的降水观测损失订正和降水频率分布优化后的数据集。数据为NETCDF格式,时间分辨率为1天,水平空间分辨率10km。该数据可作为数值模式降水频率纠正的参考数据源。 该数据集使用了164个来自中国气象局和GSOD的日观测数据作为数据源。数据的生成分为4步:(1)首先对观测数据进行了质量控制,包括异常值和坏值去除等。(2)进行主要由风引起的观测损失补偿。(3)分别采用考虑海拔的样条函数插值月降水总量,普通克里金法插值日降水与月降水的比值,将两部分相乘得得到1km空间分辨率的数据。(4)将1km空间分辨率数据均值聚合到10km空间分辨率,得到最终数据。 相比国际同类格点降水数据,该数据进行了风引起的降水观测损失订正,同时通过插值方法的优化使其在降水量频率分布上更佳准确。该数据适合用于数值模式输出降水的统计偏差纠正或分析格点上的降水频率特征。
马佳培, 李弘毅
降水中稳定的氧同位素比(δ18O)是全球大气过程的综合示踪剂。 自1990年代以来,一直致力于研究位于青藏高原TP上20多个站点的降水同位素组成,这些站点位于西风和季风之间的气团交汇处。 在本文中,我们建立了一个青藏高原月尺度降水δ18 O的数据库,并使用不同的模型来评估TP上降水δ18 O的气候控制。 降水δ18 O的时空格局及其与温度和降水的关系揭示了三个不同的域,分别与西风(北TP),印度季风(南TP)及其之间的过渡有关。
高晶
1)数据内容(包含的要素及意义):高寒网21个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、双湖站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(寒旱所)、海北站、三江源站、申扎站、贡嘎山站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2018年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网21个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
1)青藏高原地面气象观测数据产品(2017-2018) 地面气象要素驱动数据集,包括近地面气温、地面降水率、短波辐射和长波辐射4个要素。 2)该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,以及融合了中国气象局常规气象观测数据制作而成,通过空间插值形成。 3)数据为tiff格式,时间分辨率为日值,空间分辨率为0.1°。 4)方便不会使用nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
海陆热力差异是形成季风的重要原因,印度夏季风的建立与欧亚大陆和印度洋之间产生的海陆热力差异有关。对流层中高层青藏高原和热带印度洋的热力差异与印度夏季风的爆发及其年际和年代际变化紧密相关。青藏高原和热带东印度洋上空温度是对印度夏季风变化最敏感的两个区域,基于此,用500-200hPa温度场定义了一个青藏高原与印度洋热力差异指数: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] 其中,Nor表示标准化,T表示500hPa-200hPa温度场。 青藏高原与印度洋热力差异指数(TCI)分为逐候、月、夏季3种时间分辨率序列。它可以从多种时间尺度反映高原与北印度洋之间的热力差异及其与后期印度夏季风变率的关系。并且,与单独的青藏高原或印度洋热力状况相比,该指数表现得更好,指数大时,后期印度夏季风强度往往偏强。另外,TCI的逐候增量对印度季风的演变具有预测意义,TCI逐候增量超前印度季风指数3候开始显著相关,且超前15候的时候相关最大。同时,TCI逐候增量前25候平均值的大小对印度季风爆发的早晚有一定的预报意义。 资助项目: 中国科学院战略性先导科技专项泛第三极环境变化与绿色丝绸之路建设(XDA20060501 印度洋-第三极热力差异对季风的影响及其经向输送效应)
李张群, 肖子牛, 赵亮
本数据集是1990年至2015年青藏高原地区气候要素数据集,记录了青藏高原25年来每五年的年降雨量空间分布变化情况。数据为tif栅格格式,空间分辨率为1公里,年降雨量单位为0.1毫米。该数据来源于青藏高原上的气象站点日观测数据,通过时间聚合计算和空间插值处理生成,该数据集作为一种重要的气候要素可用于研究青藏高原的年际降雨量变化与气候变化,作为青藏高原生态环境变化的气候背景,为城镇化与生态环境交互胁迫研究提供数据支撑。
杜云艳, 易嘉伟
该数据集是从中国科学院青藏高原研究所开发的一套中国区域近地面气象与环境要素再分析数据集中提取得到。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。 各变量的物理意义: 气象要素 变量名 单位 物理意义 近地面气温 temp K 瞬时近地面(2m)气温 地表气压 pres Pa 瞬时地表气压 近地面空气比湿 shum kg/ kg 瞬时近地面空气比湿 近地面全风速 wind m /s 瞬时近地面(风速仪高度)全风速 向下短波辐射 srad W /平方米 3 小时平均 (-1.5hr ~ +1.5hr) 向下短波辐射 向下长波辐射 lrad W /平方米 3 小时平均 (-1.5hr ~ +1.5hr) 向下长波辐射。 降水率 prec mm/hr 3 小时平均 (-3.0hr ~ 0.0hr) 降水率。 更多信息,请参见随数据一同发布的《User’s Guide for China Meteorological Forcing Dataset》。
阳坤
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件