本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
本数据集为过去20年间(2001-2020)青藏高原生长季NDVI与植被物候数据集,数据来源为MODIS(MOD13A2)产品,空间分辨率为1km。数据集内容包括:2001-2020年每年生长季(5-9月)平均NDVI、生长季开始日期(SOS)、生长季结束日期(EOS)与生长季长度(DOS)。提取物候采用了两种方法:动态阈值方法和双对数函数法。数据格式为TIFF格式,投影为Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area。
王泰华, 杨大文
本数据集包括2000-2018年青藏高原植被生长季开始日期、结束日期多年平均空间分布格局,1982-1999年和2000-2020年青藏高原植被生长季开始日期、结束日期的时间变化趋势。该数据集以AVHRR NDVI、MODIS NDVI、EVI为基础,通过四个步骤最小化植被指数时间序列的偏差和噪声。首先,去除无植被覆盖、低植被覆盖或季节性较弱的植被对应的像元;其次,将冬季(12月至3月初)受积雪、冰或两者污染的植被指数替换为冬季未受污染的高质量的植被指数的平均值;其他季节由云和气溶胶引起的植被指数负偏差通过Savitzky-Golay方法进行校准;最后,使用双逻辑斯蒂或改良后的双逻辑斯蒂函数拟合年植被指数时间序列。基于阈值和拐点的方法,逐像元提取青藏高原植被生长季开始日期、结束日期。数据的空间分辨率为250m和1/12°。数据质量可靠。
沈妙根
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
该数据集产品包含1990-2020年每5年1期的青藏高原地上生物量和植被覆盖度数据产品,即1990年、1995年、2000年、2005年、2010年、2015年和2020年共7期。青藏高原地上生物量是根据不同的土地覆被类型,分别建立草地、森林等的地上生物量反演模型形成的地上生物量遥感反演产品;青藏高原植被覆盖度是采用像元二分法模型形成的植被覆盖度遥感反演产品。其中2000-2020年5期青藏高原地上生物量和植被覆盖度是基于MODIS卫星遥感数据进行遥感反演,空间分辨率为250米;1990和1995年2期青藏高原地上生物量和植被覆盖度是基于NOAA AVHRR卫星遥感数据进行遥感反演,经重采样后空间分辨率为250米。该数据集可为揭示青藏高原土地覆被量与质的时空格局,支持生态系统、生态资产与生态安全评估提供基础数据。
吴炳方
归一化植被指数(Normalized Difference Vegetation Index, NDVI)数据集源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理流程。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001-2020年,每年提供一幅图像。NDVI产品有红光和近红外两个波段反射率计算得到,能够用于检测植被生长状态、植被覆盖度等。-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。
朱军涛
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由SPOT/VEG ETATION NDVI卫星遥感数据、中国植被图、太阳总辐射值及温度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA(Carnegie-Ames-Stanford Approach)模型的输入变量,基于参数化模型实现对青藏高原2000-2018年1km分辨率的陆地植被净初级生产力估算。
王晓峰
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4)数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序地表温度产品。2)数据来源及加工方法:利用中国遥感卫星地面站接收存档的Landsat数据和实用单通道算法反演得到;3)数据质量描述:root-mean-square error(RMSE)约为1.23K。4)数据应用成果及前景:地表温度是一个常用的陆地表面参数,该数据集可为资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含2020年青藏高原地区MODIS时序光合有效辐射分数(FPAR)产品、地表总初级生产力产品(GPP)产品、Npp产品、蒸散发产品(ET)和叶面积指数(LAI)产品。2)数据来源及加工方法:FPAR产品和LAI产品来自第六版MODIS Terra MOD15A2H产品集,GPP和NPP产品均来自MODIS Terra MOD17A2H产品集,蒸散发产品来自MODIS Terra MOD16A2;通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:每种产品均有相应的质量文件,标识了云、雪、无效值等,以有效位编码方式存储。4)数据应用成果及前景:在森林、农业、生态等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
青藏高原灾害编录包含了多种历史灾害的空间分布与类型信息,范围西至巴基斯坦、克什米尔地区,东至青海省,南至喜马拉雅山山麓,北至阿尔金山山麓。数据的生产是由大量人工遥感解译、实地考察、收集地调数据与开源数据结合完成的。数据以矢量点的形式储存,主要内含属性表注明灾害类型、坐标等信息。本数据可以应用于研究灾害的空间分布规律与灾害评价工作。本数据共包含23536条数据,泥石流数据由于参考了地调数据,大多沿路分布,无人区则数据较少。
唐晨晓
本数据集为青藏高原区域2016-2019年0.02° x0.02°地表反照率日变化产品。采用耦合地形因子的多源遥感数据协同反演的BRDF模型(Extended Multi-Sensor Combined BRDF Inversion model (EMCBI)),并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)和AHI天顶反射率数据集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日内变化的反照率,其中,黑空反照率的太阳入射为北京时间8:00-18:00逐小时的入射(UTM time zone 8)。经过验证评估,日内变化的反照率更能有效捕捉反照率的日变化,可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
1)数据内容:采用修正通用水土流失方程(RUSLE)估算地块尺度土壤水蚀模数,利用土壤保持量衡量生态系统减少降水导致土壤侵蚀的能力,表征植被作用引起的水蚀减少量,即实际地表覆盖条件下与极度退化状态下土壤水蚀量的差值。依据上述过程做出30年(1990-2020年,每5年一期)青藏高原生态功能图,包含水源涵养和土壤保持数据集两部分。 2)数据来源及加工方法:该图集基于生态系统类型数据、MODIS的NDVI产品、1:100万土壤属性数据、气象插值与高程等数据,采用降水贮存量法估算森林、草地生态系统的水源涵养量,以生态系统水文调节效应衡量其涵养水分的能力, 即与裸地相比涵养水分的增量。 3)数据质量:数据时间分辨率5年,空间分辨率1000m,可满足青藏高原高精度生态系统评估研究需求。 4)数据应用成果及前景:统计结果表明,近30年,青藏高原水源涵养功能量空间分布上呈现东南部高、西北部低,自东南部向西北部逐渐降低的总体分布格局。土壤保持量整体呈现波动中增加趋势,西部与南部大部分区域土壤保持功能量呈现减少趋势,其中南部减小趋势明显,东部地区呈现增加趋势。
曹巍, 黄麟
木里煤矿是青藏高原的一个典型工矿区,以木里煤矿为例,在区域的划定上,我们采取其东西南北四个方位的坐标界限对其进行裁剪,得到一个矩形区域,并将其作为木里煤矿的矿区范围。我们采用中国科学院地理所资源环境与数据中心提供的全国1km土地利用遥感监测数据,其中2000、2005、2010年三期的数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,2015、2020年两期以Landsat8 OLI/TIRS遥感影像为主要数据源,并均通过人工目视解译生成。裁剪出木里矿区,得到2000-2020年五期土地利用数据,数据格式为栅格TIF,分辨率为1km。
刘振伟, 陈少辉
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件