青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
印度洋-第三极(青藏高原)大气和海洋的热力状况是影响亚洲季风活动和泛第三极区域气候变化的重要因素。在季节和年际尺度上,印度洋-第三极经向断面区域的大气和海洋热源状况与印度季风、孟加拉湾季风、热带印度洋海温模态演变等密切相关。基于此,我们计算并建立了印度洋-第三极经向断面区域的大气和海洋热源数据集。 为了得到每个等压面上大气加热率的水平分布,我们采用Yanai et al.(1973)提出的计算大气热源的倒算法: Q_1=c_p [∂T/∂t+V ⃑∙∇T+(p/p_0 )^κ ω ∂θ/∂p] 其中,Q_1为大气视热源,影响大气热源的因子有温度局地变化项、温度平流项和位温垂直变化项。T是气温,θ是位温,V ⃑是水平风矢量,ω是垂直速度,p_0=1013.25hPa。κ=R/c_p,R和c_p分别为干空气的气体常数和定压比热,κ≈0.286。 我们利用ERA5全球大气再分析资料(The Fifth Generation ECMWF Atmospheric Reanalysis of the Global Climate),计算了2000-2019年逐月的印度洋-第三极经向断面区域(30°S-60°N,60°E、70°E、80°E、90°E)大气垂直剖面加热率(单位:K/s,水平分辨率:1°×1°,垂直范围:1000-100hPa,共27层)。 参照Hall and Bryden(1982)可以给出在给定经度的垂直剖面上的海洋内部热能输送(Ocean Heat Transport,OHT)计算公式: OHT=∮_(Θ=Θ_i)▒∫_(z_b)^(z_0)▒〖ρ_0 c_p (θ-θ_r ) 〗∙udz 其中,ρ_0是海水密度,c_p是海水的比热容,θ是海水位温,基准温度θ_r可取0℃,u是纬向海水流速。z_0、z_b分别表示海表和海底深度。 我们利用CMEMS(Copernicus Marine Service)全球海洋集合再分析数据,计算了2000-2019年逐月的印度洋-第三极经向断面区域(30°S-30°N,60°E、70°E、80°E、90°E)海洋内部垂直剖面的热能输送(以向东为正,单位:PW(1015W),水平分辨率:1°×1°,垂直范围:从海表到海底约5900m深度,共75层)。 该数据集可以反映出印度洋-青藏高原地区经向剖面的大气和海洋热力状况与印度季风、孟加拉湾季风、热带印度洋海温模态演变的密切关联。比如,从印度洋-第三极70°E经向断面区域大气垂直剖面加热率的逐月演变(图1)能够看到,从3月至5月,大气热源区从热带南印度洋上空逐渐向北推进,特别是从5月到6月,大气热源区从赤道印度洋上空移向热带北印度洋上空,且强度显著加强、范围明显扩大,与此同时印度夏季风爆发。比如,从印度洋-第三极90°E经向断面区域大气垂直剖面加热率的逐月演变(图2)可以看到,4月到6月,大气热源区从热带印度洋上空向青藏高原南侧扩张并明显增强,与孟加拉湾季风的爆发和向北推进相一致。再比如,根据印度洋-第三极60°E和90°E经向断面区域海洋内部热能输送的逐月演变(图3和4)可知,赤道印度洋次表层有自西向东的海洋热能输送,它与印度洋赤道潜流的位置非常接近,且在西部的强度明显高于东部,这与风-温跃层-海温之间的反馈机制有关;另外值得注意的是,该次表层热能输送在春季(3-5月)较强,夏季减弱,秋末冬初(10-12月)再次显著加强,与印度洋偶极子的发展和形成存在相互作用。
李德琳, 肖子牛, 赵亮
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
该数据集提供了位于拉萨市区北郊的夺底沟径流实验站的流量、降水、气温监测数据。其中,径流监测站点2处,提供了2019年6月至12月的径流数据,数据步长为10分钟;降水监测站点5处,提供了2018-2021年的降水数据,数据步长为1日;气温监测站点8处,提供了2018-2021年的气温数据,数据步长为30分钟。径流数据、降水和气温数据均为实测数据。该数据集可以为青藏高原的水文和气象过程研究提供数据支撑。
刘金涛
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、格尔木站、天山站、祁连山站、若尔盖站(共2个点,西北院和成都生物所)、玉龙雪山站、那曲站(含3个站点,青藏所、西北院和地理所)、海北站、三江源站、申扎站、拉萨站、青海湖站)2020年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和通量等数据) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。另外,该数据集是对中国高寒区地表环境与观测网络气象数据(2019)的更新。
朱立平
该数据集包括2000–2009 和 2090–2099两个时段的NEX-GDDP (NASA Earth Exchange Global Daily Downscaled Projections)的每日最低气温(Tmin)、最高气温数据(Tmax)和降水量(PPT)数据(v1.0),日最高温和日最低温单位为K;降水量单位为kgm-2s-1;背景填充值为-999。 本数据集在原始数据基础上裁取青藏高原范围内像元,原始数据于2020年8月下载自 https://portal.nccs.nasa.gov/datashare/NEXGDDP/BCSD/。 NEX-GDDP数据集由CMIP5(Coupled Model Intercomparison Project Phase 5)历史气候和RCP(Representative Concentration Pathways)4.5情景模式下运行的大气环流模型(General Circulation Models)得到,共包括21个大气环流模型;其中 2000–2005为历史气候情景,2006–2009和2090–2099为RCP 4.5情景。原始数据相关说明请参见:https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp。
沈妙根, 姜楠
本数据是基于Chen et al. 2016, Chen et al. 2011, Chen et al. 2013 所使用的2008年改则无线电探空观测数据基础之上再加工处理成的资料,加工的大气风速、风向、气温、相对湿度、气压的垂直分辨率为20m,共处理了2008年三个观测阶段的资料,即IOP1,IOP2和IOP3。IOP1从2008年2月25日开始到2008年3月19日,IOP2从2008年5月13日到6月12日,IOP3从2008年7月7日到7月16日,一天4次观测。原始无线电探空仪型号为Vaisala RS-92,原数据为每2s一条数据记录,根据Chen et al. 的文章需要对该资料采用高度等间距法对所有变量进行了线性插值。
陈学龙, 马耀明
1)数据内容(包含的要素及意义):高寒网21个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、双湖站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(寒旱所)、海北站、三江源站、申扎站、贡嘎山站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2018年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网21个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
1)青藏高原地面气象观测数据产品(2017-2018) 地面气象要素驱动数据集,包括近地面气温、地面降水率、短波辐射和长波辐射4个要素。 2)该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,以及融合了中国气象局常规气象观测数据制作而成,通过空间插值形成。 3)数据为tiff格式,时间分辨率为日值,空间分辨率为0.1°。 4)方便不会使用nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
丁利荣, 周纪, 王伟, 马晋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
海陆热力差异是形成季风的重要原因,印度夏季风的建立与欧亚大陆和印度洋之间产生的海陆热力差异有关。对流层中高层青藏高原和热带印度洋的热力差异与印度夏季风的爆发及其年际和年代际变化紧密相关。青藏高原和热带东印度洋上空温度是对印度夏季风变化最敏感的两个区域,基于此,用500-200hPa温度场定义了一个青藏高原与印度洋热力差异指数: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] 其中,Nor表示标准化,T表示500hPa-200hPa温度场。 青藏高原与印度洋热力差异指数(TCI)分为逐候、月、夏季3种时间分辨率序列。它可以从多种时间尺度反映高原与北印度洋之间的热力差异及其与后期印度夏季风变率的关系。并且,与单独的青藏高原或印度洋热力状况相比,该指数表现得更好,指数大时,后期印度夏季风强度往往偏强。另外,TCI的逐候增量对印度季风的演变具有预测意义,TCI逐候增量超前印度季风指数3候开始显著相关,且超前15候的时候相关最大。同时,TCI逐候增量前25候平均值的大小对印度季风爆发的早晚有一定的预报意义。 资助项目: 中国科学院战略性先导科技专项泛第三极环境变化与绿色丝绸之路建设(XDA20060501 印度洋-第三极热力差异对季风的影响及其经向输送效应)
李张群, 肖子牛, 赵亮
本数据集是1990年至2015年青藏高原地区气候要素数据集,记录了青藏高原25年来每五年的年平均气温空间分布变化情况。数据为tif栅格格式,空间分辨率为1公里,年平均气温单位为0.1摄氏度。该数据来源于青藏高原上的气象站点日观测数据,通过时间聚合计算和空间插值处理生成,该数据集作为一种重要的气候要素可用于研究青藏高原的年平均气温变化与气候变化,作为青藏高原生态环境变化的气候背景,为城镇化与生态环境交互胁迫研究提供数据支撑。
杜云艳, 易嘉伟
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
张凡, 张宏波
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件