本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
积雪是冰冻圈的重要组成要素,是全球变化与地球系统科学研究中不可或缺的变量。积雪的分布范围和物候信息是衡量积雪变化特征的重要指标,也是寒区水文模型中融雪径流模拟的重要参数。亚洲高山区是许多国际性河流的发源地,也是全球气候变化研究的热点区;该地区冰雪变化将引发的水资源减少、极端天气事件增多、灾害频发等生态和环境问题,已受到各国的广泛关注。因此,准确获取长时序的亚洲高山区积雪分布与积雪物候数据对气候变化研究、水资源管理以及灾害预警与防治至关重要。 亚洲高山区逐日无云MODIS归一化积雪指数(NDSI)产品(2000-2021,500 m)是在MODIS逐日积雪产品(包括Terra上午星数据产品MOD10A1和Aqua下午星数据产品MYD10A1,C6版本)的基础上,通过同一天上下午星数据融合以及三次样条函数插值去云算法处理后得到;其中,在2000-2002年只有上午星数据产品MOD10A1时,则直接采用三次样条函数插值去云算法处理。水文年2002-2020的积雪物候数据集是基于逐水文年内的无云MODIS NDSI产品制备而成,包括积雪开始日期(SOD)、积雪结束日期(SED)和积雪持续日数(SDD)3个参数。本数据集具有可靠的精度。
唐志光, 邓刚
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制”、冰川、积雪、冻土变化与影响及应对 (2019QZKK0201)以及泛第三极环境变化与绿色丝绸之路建设(XDA20000000)等项目的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪水当量产品。该数据采用亚像元时空分解算法对青藏高原0.05°逐日积雪深度数据集(2000-2018)进行降尺度,并且采用雪深衰减模型补充反演微波探测不到的薄雪区域的雪深值。最后基于积雪密度格网数据,将积雪深度数据转换为雪水当量数据。
闫大江, 张寅生
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
该数据集包含青藏高原160个湖泊(面积大于40平方公里)1978-2017年的连续日尺度湖面温度(MOD11A1的日间湖温、MOD11A1的夜间湖温、基于MOD11A1日均湖面温度、基于模型的湖面温度)。数据集生产过程首先改进以能量平衡为基础的半物理湖表水温模型(air2water)以实现冰期与非冰期连续模拟,并以MOD11A1产品提取的全湖平均表面温度作为模型的率定数据。数据集与4个湖泊的实测湖面温度相比相关性大于0.9,均方根误差小于2.5℃。该数据集为认知青藏高原湖泊水热平衡、水生生态系统过程及其对气候变化响应提供数据支撑。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序EVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过EVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了背景调节参数C1,C2和大气修正参数L进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:EVI相比于NDVI具有较强的抗大气干扰能力以及抗噪音能力,更适用于气溶胶含量较高的天气状况下,以及植被茂盛区。
彭燕
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件