该数据集包括青藏高原不同地区不同环境介质的碳质组分的碳同位素数据(10个青藏高原典型站点的气溶胶中黑碳和有机碳的碳同位素数据、11个雪坑不同年份的黑碳和水不溶性有机碳的碳同位素数据、及青藏高原及其周围地区11个站点季风期降水中水溶性有机碳的碳同位素数据),所有样品均为各个站点实地采集,测试了各碳质组分的含量及δ13C和Δ14C数据,利用该数据可以精确评估大气碳质气溶胶和沉降在冰川上碳质颗粒物以及降水中水溶性有机碳的来源以化石燃料和生物质燃料的贡献比例。
李潮流
本数据集为青藏高原地区各典型站点—纳木错站(2013-2017)、鲁朗站(2014-2017)、珠峰站(2015-2016)及拉萨站(2017-2018)降水中黑碳和水不溶性有机碳的含量及各个站点的降水量数据,实地采集各个站点的降水样品后,进行过滤处理,测试每个降水事件样品的黑碳和水不溶性有机碳的含量,通过该数据可评估青藏高原典型地区水不溶性碳质颗粒物湿沉降速率的时间和空间变化,是模型模拟重要的输入数据。
李潮流
本数据集包括青藏高原典型站点(然乌(2018-2021)、纳木错(2013-2016)、珠峰(2013-2016)、鲁朗站(2015-2016))的大气和降水中碳质组分的吸光数据,所有样品均来自于各个采样点实地采集,测试了黑碳和水溶性有机碳的浓度,以及吸光数据,利用表示吸光能力的指标(MAC值),计算了水溶性有机碳和黑碳的吸光的MAC值,该数据对于评估大气中碳质颗粒物的辐射强迫具有重要意义,是模型模拟输入的重要基础数据。
李潮流
中国科学院(CAS)气候系统模式FGOALS-f3-L于近期完成了第六次国际耦合模式比较计划(CMIP6)试验中的全球季风比较计划(GMMIP)的Tier-1和Tier-3试验并发布了相应数据。本文是FGOALS-f3-L参加GMMIP试验的数据描述文章。在GMMIP Tier-1试验中,基于观测的海温和海冰强迫,FGOALS-f3-L模式完成了三组不同初始场的历史模拟试验。在GMMIP Tier-3试验中,FGOALS-f3-L模式完成了5组地形和热力扰动的敏感性试验。具体来说,包括四组地形敏感性试验,分别去除了青藏高原、东非和阿拉伯半岛高原、北美马德雷山脉和南美的安第斯山脉,以及一组热力敏感性试验,去除了青藏-伊朗高原及邻近区域500m以上地形的地表感热加热。这组数据集将贡献于CMIP6用于评估海温对全球季风环流和降水的长期以及短期趋势的影响,以及更好的理解大地形在影响全球季风中的作用。
何编
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
基于雅鲁藏布江流域内已有的262个雨量筒逐月降水数据、WRF和ERA5降水数据,利用随机森林学习算法重建了雅鲁藏布江流域及7个子流域1951–2020年10km分辨率的逐日降水数据。该数据经过了站点单点验证,在年和季节变化方面表现较好。并且该数据经过了水文模型反向评估,利用该数据驱动VIC水文模型模拟了雅江流域及各子流域径流变化,并利用实测径流、MODIS及冰川编目数据进行验证。该数据在原有第一版基础上考虑了降水空间分配特征,能更好描述高山区降水特征。
孙赫
青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。这些产品是经过云检测之后的结果。数据覆盖时间从2021年1月1日到2021年12月31日,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Ångström指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
青藏高原作为强大的热源,影响到亚洲季风的爆发与进退,西风带和季风带的相互作用。为了研究高原热力作用的变化及其对周边地区气候的影响,需要高原热源相关的基础数据。 本数据集由再分析资料计算得到得青藏高原及其周边地区逐月热源基础数据构成,变量包括青藏高原及周边地区大气热源、潜热通量、感热通量等,其水平范围覆盖为40°E-180°,20°S-80°N。空间分辨率为2.5°x2.5°,主要包括ERA5和NCEP/NCAR两种再分析资料数据。
李清泉
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
青藏高原地区是除南北极和格陵兰之外中低纬度最大的冰川富集区,固态水体冰川与液态水体湖泊、河流共同组成了亚洲水塔。高原的热力和动力作用及其变率是高原影响亚洲季风与全球大气环流异常的主要驱动力之一。研究青藏高原本身的热力性质以及反馈作用,需要利用气候模式,开展青藏高原与周围地区的百年历史检验和未来百年的预估(温度、降水、辐射等)。 本数据集由青藏高原及其周边地区的格点温度、降水、辐射等数据构成,其水平范围覆盖为40°E-180°,20°S-80°N,时间分辨率包括年、季平均。数据采用第六次国际耦合模式比较计划(CMIP6)中国国家气候中心BCC-CSM2-MR模式试验结果,包括historical,SSP126,SSP245,SSP370,SSP585试验的百年历史模拟与未来预估数据,根据双线性插值方法,统一插值到1°x1°分辨率水平。该数据可以为第二次青藏高原考察时段提供区域气候和水循环变化的基本信息,为外场考察结果提供参考,研究可能的变化机理。
李清泉
青藏高原地面PM2.5浓度数据以日期命名(YYYYMMDD)。其中每个nc文件包含一天的数据,里面包含该区域的PM2.5浓度,经纬度以及时间信息(对应数据中的变量名为PM2.5,lon,lat,time)。数据反演依赖美国国家航空航天局NASA发布的再分析资料MERRA-2和多角度成像光谱仪MISR的AOD产品。MERRA-2主要基于NASA的地球系统模型版本5(GEOS 5)。该算法能够同化所有原位和遥感大气数据。本数据主要用到MERRA-2的气溶胶场。这是首次将气象和气溶胶观测联合同化为全球同化系统的年代际再分析资料。MISR是通过指向9个不同方向的摄像机观察地球,可以知道在自然条件下散射到不同方向的辐射。本数据算法主要用到的数据产品有MERRA-2 气溶胶分析产品(M2T1NXAER)和MISR level 3版本四全球气溶胶产品(MIL3DAEN_4)。首先用MERRA-2提供的气溶胶信息计算得到每个格点中的PM2.5与AOD的比值,然后用MISR的AOD乘以该比值即为该格点的PM2.5浓度。利用该方法得到的PM2.5浓度平均预测误差在20微克/立方米以内。相应的PM2.5产品也可以为评估青藏高原地区颗粒物污染状况提供参考。
傅迪松
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
印度洋-第三极(青藏高原)大气和海洋的热力状况是影响亚洲季风活动和泛第三极区域气候变化的重要因素。在季节和年际尺度上,印度洋-第三极经向断面区域的大气和海洋热源状况与印度季风、孟加拉湾季风、热带印度洋海温模态演变等密切相关。基于此,我们计算并建立了印度洋-第三极经向断面区域的大气和海洋热源数据集。 为了得到每个等压面上大气加热率的水平分布,我们采用Yanai et al.(1973)提出的计算大气热源的倒算法: Q_1=c_p [∂T/∂t+V ⃑∙∇T+(p/p_0 )^κ ω ∂θ/∂p] 其中,Q_1为大气视热源,影响大气热源的因子有温度局地变化项、温度平流项和位温垂直变化项。T是气温,θ是位温,V ⃑是水平风矢量,ω是垂直速度,p_0=1013.25hPa。κ=R/c_p,R和c_p分别为干空气的气体常数和定压比热,κ≈0.286。 我们利用ERA5全球大气再分析资料(The Fifth Generation ECMWF Atmospheric Reanalysis of the Global Climate),计算了2000-2019年逐月的印度洋-第三极经向断面区域(30°S-60°N,60°E、70°E、80°E、90°E)大气垂直剖面加热率(单位:K/s,水平分辨率:1°×1°,垂直范围:1000-100hPa,共27层)。 参照Hall and Bryden(1982)可以给出在给定经度的垂直剖面上的海洋内部热能输送(Ocean Heat Transport,OHT)计算公式: OHT=∮_(Θ=Θ_i)▒∫_(z_b)^(z_0)▒〖ρ_0 c_p (θ-θ_r ) 〗∙udz 其中,ρ_0是海水密度,c_p是海水的比热容,θ是海水位温,基准温度θ_r可取0℃,u是纬向海水流速。z_0、z_b分别表示海表和海底深度。 我们利用CMEMS(Copernicus Marine Service)全球海洋集合再分析数据,计算了2000-2019年逐月的印度洋-第三极经向断面区域(30°S-30°N,60°E、70°E、80°E、90°E)海洋内部垂直剖面的热能输送(以向东为正,单位:PW(1015W),水平分辨率:1°×1°,垂直范围:从海表到海底约5900m深度,共75层)。 该数据集可以反映出印度洋-青藏高原地区经向剖面的大气和海洋热力状况与印度季风、孟加拉湾季风、热带印度洋海温模态演变的密切关联。比如,从印度洋-第三极70°E经向断面区域大气垂直剖面加热率的逐月演变(图1)能够看到,从3月至5月,大气热源区从热带南印度洋上空逐渐向北推进,特别是从5月到6月,大气热源区从赤道印度洋上空移向热带北印度洋上空,且强度显著加强、范围明显扩大,与此同时印度夏季风爆发。比如,从印度洋-第三极90°E经向断面区域大气垂直剖面加热率的逐月演变(图2)可以看到,4月到6月,大气热源区从热带印度洋上空向青藏高原南侧扩张并明显增强,与孟加拉湾季风的爆发和向北推进相一致。再比如,根据印度洋-第三极60°E和90°E经向断面区域海洋内部热能输送的逐月演变(图3和4)可知,赤道印度洋次表层有自西向东的海洋热能输送,它与印度洋赤道潜流的位置非常接近,且在西部的强度明显高于东部,这与风-温跃层-海温之间的反馈机制有关;另外值得注意的是,该次表层热能输送在春季(3-5月)较强,夏季减弱,秋末冬初(10-12月)再次显著加强,与印度洋偶极子的发展和形成存在相互作用。
李德琳, 肖子牛, 赵亮
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
1. 总编号为测量年的统一编号,如:17-001(2017年的第一个测点),野外编号为单次野外编号。 2. 时间:测量时的北京时间,如: 2017/08/01 13:25(2017年8月1日13时25分)。 3. 地理位置:测量点的经纬度,如: 29.6584,101.0884(北纬29.6584°,东经101.0884°),野外由Garmin 63sc型GPS测定。 4. 海拔:测量点的绝对海拔高程,如4500m (海拔4500米),野外由Garmin 63sc型GPS测定,精度为1 m。 5. 实测植被盖度(%):在野外用样方(1000 m*1000 m)测得。 6. 大气压:野外用DPH-103型智能数字温湿度大气压计测得,如651.7kPa,精度:0.1 kPa。 7. 气温:野外用DPH-103型智能数字温湿度大气压计测得,如15.61℃,精度:0.01℃。 8. 相对湿度:野外用DPH-103型智能数字温湿度大气压计测得,如79.1%,精度:0.1%。 9. 相对氧含量:野外用TD400-Sh-O2便携式氧气检测仪测得,如20.16%,精度:0.01%。 其中,17-001至17-065采样点的海拔通过Garmin Oregon 450型GPS测定, 精度为1 m;大气压通过卡西欧prg-130gc型气压计测定, 精度为5 hPa;氧气相对含量利用CY-12C型数字测氧仪测得,0-50.0%量程,分辨率为0.1%,精度为±1%。
史培军
本数据为青藏高原CHNAB005号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。 较去年不同的是,今年科考数据最多的网格发生了变化,可能有受到疫情或者环境的影响。
邓涛
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件