该数据集包括青藏高原不同地区不同环境介质的碳质组分的碳同位素数据(10个青藏高原典型站点的气溶胶中黑碳和有机碳的碳同位素数据、11个雪坑不同年份的黑碳和水不溶性有机碳的碳同位素数据、及青藏高原及其周围地区11个站点季风期降水中水溶性有机碳的碳同位素数据),所有样品均为各个站点实地采集,测试了各碳质组分的含量及δ13C和Δ14C数据,利用该数据可以精确评估大气碳质气溶胶和沉降在冰川上碳质颗粒物以及降水中水溶性有机碳的来源以化石燃料和生物质燃料的贡献比例。
李潮流
本数据集包括青藏高原典型站点(然乌(2018-2021)、纳木错(2013-2016)、珠峰(2013-2016)、鲁朗站(2015-2016))的大气和降水中碳质组分的吸光数据,所有样品均来自于各个采样点实地采集,测试了黑碳和水溶性有机碳的浓度,以及吸光数据,利用表示吸光能力的指标(MAC值),计算了水溶性有机碳和黑碳的吸光的MAC值,该数据对于评估大气中碳质颗粒物的辐射强迫具有重要意义,是模型模拟输入的重要基础数据。
李潮流
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
汪涛, 刘丹, 魏建军
基于雅鲁藏布江流域内已有的262个雨量筒逐月降水数据、WRF和ERA5降水数据,利用随机森林学习算法重建了雅鲁藏布江流域及7个子流域1951–2020年10km分辨率的逐日降水数据。该数据经过了站点单点验证,在年和季节变化方面表现较好。并且该数据经过了水文模型反向评估,利用该数据驱动VIC水文模型模拟了雅江流域及各子流域径流变化,并利用实测径流、MODIS及冰川编目数据进行验证。该数据在原有第一版基础上考虑了降水空间分配特征,能更好描述高山区降水特征。
孙赫
青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。这些产品是经过云检测之后的结果。数据覆盖时间从2021年1月1日到2021年12月31日,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Ångström指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
数据包括青藏高原内流冰川1975-2000表面高程空间变化 (100 m)、内流区各子流域1975-2020冰川的平均高程变化值以及流域边界和分区三个文件。1975-2000年冰川表面高程变化,基于32对KH-9数据和NASADEM获取,其中木孜塔格和普若岗日地区的结果分别来自Zhou et al. (2018)和Bhattacharya et al.(2021)。1995-2020期间,各流域每5年的平均高程变化结果,根据Hugonnet et al.(2021)公布的数据进行计算,这里假设1995-2000的冰川厚度变化情况与2000-2005类似。受KH-9数据质量限制及内流区冰川特性的影响,空值区域较多,建议结合分区,首先计算各个高程带的变化结果,再映射到每个子流域。
陈文锋, 张国庆
积雪是冰冻圈的重要组成要素,是全球变化与地球系统科学研究中不可或缺的变量。积雪的分布范围和物候信息是衡量积雪变化特征的重要指标,也是寒区水文模型中融雪径流模拟的重要参数。亚洲高山区是许多国际性河流的发源地,也是全球气候变化研究的热点区;该地区冰雪变化将引发的水资源减少、极端天气事件增多、灾害频发等生态和环境问题,已受到各国的广泛关注。因此,准确获取长时序的亚洲高山区积雪分布与积雪物候数据对气候变化研究、水资源管理以及灾害预警与防治至关重要。 亚洲高山区逐日无云MODIS归一化积雪指数(NDSI)产品(2000-2021,500 m)是在MODIS逐日积雪产品(包括Terra上午星数据产品MOD10A1和Aqua下午星数据产品MYD10A1,C6版本)的基础上,通过同一天上下午星数据融合以及三次样条函数插值去云算法处理后得到;其中,在2000-2002年只有上午星数据产品MOD10A1时,则直接采用三次样条函数插值去云算法处理。水文年2002-2020的积雪物候数据集是基于逐水文年内的无云MODIS NDSI产品制备而成,包括积雪开始日期(SOD)、积雪结束日期(SED)和积雪持续日数(SDD)3个参数。本数据集具有可靠的精度。
唐志光, 邓刚
持续的全球变暖和冰冻圈退化正在引起人们对适应山区环境不稳定的关注。近几十年来,与冰川有关的斜坡崩塌,如冰崩、冰川上的岩崩,已被频繁记录。在这项研究中,我们建立了一个与冰川有关的滑塌的全球清单,以研究它们的分布、趋势、断裂以及与气候变化的关系。在1901-2019年期间,共记录了737起与冰川相关的滑塌事件,包括156次冰崩,89次冰-岩崩,26次冰川滑塌,以及466次冰川上岩崩。西北太平洋地区有记录的案例最多(N=440,60%),其中以冰川上岩崩最为主要。此外,整合与完善了目前公布的地区或全球性质的冰湖溃决洪水清单,并单独分离出了冰碛湖溃决洪水事件。1901-2020年间共统计到380起冰碛湖溃决洪水事件,是目前最为完善的全球范围内的清单。
张太刚, 王伟财
该数据集是支持《Advances in Climate Change Research》论文(Ran等,2022)分析的部分数据,包括第三极区域(青藏高原、帕米尔高原和天山)多年冻土、季节冻土和未冻土的当前(2000-2016年)范围、多年冻土年平均地温和活动层厚度的1960s以来每十年的变化,以及论文中的第三极范围数据。
冉有华, 李新, 车涛, 王冰泉, 程国栋
本数据集包含基于观测约束的本世纪末(2080-2099年)中排放情景(SSP245)下青藏高原地区冻土分布。研究参考Chadburn et al.(2017)运用通过空间关系约束时间变化这一思路,利用现阶段青藏高原1km分辨率冻土分布图(Zou et al. 2017)和CMFD 气候数据集,建立青藏高原冻土分布与温度梯度的数值关系。在此基础上,结合CMIP6 SSP245情景下10个地球系统模式模拟的未来青藏高原温度预测集合平均,模拟本世纪末(2080-2099年)中排放情景下青藏高原地区冻土分布。可为评估未来气候变化背景下冻土退化的速度和时空特征提供数据支持。
魏建军, 刘丹, 汪涛
多年冻土退化通过降低基底强度、增加物质运移和热融活动频率等方式威胁基础设施的安全,导致其维护成本增加、使用寿命缩短,造成现实的经济损害。 该数据集是发表在Communications Earth & Environment (2022,3,238.doi: 10.1038/s43247-022-00568-6)关于青藏高原未来多年冻土退化经济损害的论文数据。该数据集包括了预测的青藏高原空间分辨率为1km的未来多年冻土危险等级数据和论文中图2、3、4的原始数据。
冉有华, 程国栋, 董元宏, 李新
典型年三极冰雪微生物后处理产品收集了2010-2018年期间南北极以及青藏高原地区冰川、冰川雪和冰里采样细菌分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极和青藏高原地区冰川雪和冰里原核为刘勇勤老师实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平;青藏高原冰川采集时间为2010-2018年间,包含刘勇勤老师实验组分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣老师分离的马兰冰川和张新芳老师分离的若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平。
叶爱中
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
本数据集包括祁连山地区2021年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件