项目基于Landsat_TM30m遥感数据通过人工解译和机器学习算法完成了1990-2015年祁连山地区森林、农田、草地、湿地、聚落城市、荒漠六大类生态系统的空间格局分布信息提取,该套数据可以服务于研究区域生态系统宏观格局演变规律,生态系统服务功能评估,重大生态修复工程规划与效果评估。生态系统宏观格局演变是气候-社会经济耦合驱动的自然过程演变的宏观反应,也是土地利用与土地覆被变化的直接反映,更是区域可持续发展成效评估的重要数据基础。研究可为祁连山地区绿色发展指数评估提供数据基础。
吴锋
此数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的1985年祁连山国家公园土地利用类型的数据。数据生产制作是利用Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成,得到的矢量数据。土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。可以分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
本数据集包括祁连山区域2020年的30m耕地和建设用地分布产品。该产品来源于祁连山区域2020年30m的土地覆盖分类产品。2020年30m的土地覆盖分类产品以2019年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到。产品的总精度优于85%。该产品是1985-2019年人类活动参数产品的延续。1985-2019年的人类活动参数产品也可在本网站下载得到。
杨爱霞, 仲波, 吴俊君
本数据集为祁连山区域2020年的30m土地覆盖分类产品。该产品以2019年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2019年土地覆盖分类产品的延续。1985-2019年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2020年的土地利用产品为1年1期。
杨爱霞, 仲波, 角坤升, 吴俊君
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集为祁连山区域2019年日分辨率地表反照率产品,空间分辨率500m。采用耦合地形因子的基于MODIS反射率数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制。MODIS地表反射率数据为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率。经过验证评估,满足反照率应用精度要求,相较于同类产品对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑祁连山地区辐射平衡、环境变化研究。
闻建光, 唐勇, 游冬琴
本数据集包括祁连山区域1982、1985、1990、1995、2000、2005、2010、2015、2017 年度地表短波反照率产品,空间分辨率为0.01°,时间分辨率为月。采用AVHRR长时间系列地表反射率,通过多角度多波段核驱动模型联合月度内多角度红光和近红外波段的AVHRR反射率数据反演核系数,积分得到短波波段的黑空反照率和白空反照率,经过重采样为0.01°空间分辨率。AVHRR地表反射率数据通过官网下载,经过月度累计多角度数据集进行反演,产品具有较好的时空连续性,可用于长时间系列的环境变化监测等。
闻建光, 游冬琴, 唐勇, 吴善龙, 仲波
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
本数据集包括祁连山区域2019年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。 数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好。
吴金华, 仲波
本数据集包括祁连山区域2018年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表叶面积指数(Leaf Area Index, LAI)产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件