植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
本数据为祁连山地区2020年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2020年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2020年的大致分布,可用于流域水资源定量估计研究。
李佳, 李建江, 李新, 刘绍民
本数据为祁连山地区2019年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2019年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2019年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据集包括祁连山地区2020年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据,中国区域高时空分辨率地面气象要素驱动数据集等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山地区2018年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据为祁连山地区2019年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2019年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2019年的大致分布,可用于流域水资源定量估计研究。
李佳, 李建江, 李新, 刘绍民
本数据集包括祁连山地区2019年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山区域2018年的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出2018年的土地覆盖分类产品。对分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波
本数据集包括祁连山区域1990年至2017年每5年一期的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出1985-2017年每5年一期的土地覆盖分类产品。对2套2015年的分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,每5年一期的频次能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波, 角坤升
本数据集包括祁连山地区2018年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山地区2017年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周济-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区1985-2015年每5年一期的逐月地表蒸散发产品,1985-1995年产品分辨率为0.05°,2000-2015年产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR)、GIMMS AVHRR NDVI等遥感产品,中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山地区2005年、2010年、2015年月0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2002年6月19日至2018年12月30日SMAP时间扩展日0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区1980、1985、1990、1995和2000年SMAP时间扩展月值0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据为祁连山地区1980-2015年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为1978-2018年祁连山全境的Landsat系列影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品分为8期,时间分辨率为5年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在近35年内的分布时序变化,可用于流域水资源定量估计研究。
李佳, 李建江
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件