本数据集包括青藏高原西部鲁玛江东错,美马错,骆驼湖和结则茶卡2016年以来湖泊水位观测数据 湖水水位通过HOBO水位计或Solist水位计观测,并通过岸边气压计进行校正,精度小于0.5 cm。 数据集包含以下内容: 2016-2021年鲁玛江东错湖水水位日变化数据; 2017-2019年,2020-2021年美马错湖水水位日变化数据; 2019-2020年骆驼湖湖水水位日变化数据; 2019-2020年结则茶卡湖水水位日变化数据。 水位,单位:m。
类延斌
1967-2020年湖水表面温度(LSWT, 下社站); 1994-2020年湖冰冰厚和和结冰期(下社站); 1956-2020年流域径流(布哈站); 1956-2020年水位(下社站); 1956-2020年湖泊面积 ( 根据2001-2020年Landsat数据提取的湖泊面积和实测的湖泊水位建立面积-水位关系,从而利用实测水位数据估算无Landsat影像年份的面积); 1958-2019年气温(刚察站); 1958-2019年降水量(刚察站)
张国庆
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
高亚洲地区是中纬度全球变化敏感区和研究的热点区域,其境内湖泊星罗棋布,湖冰冻融参数是全球变化的关键敏感因子之一。由于冰水介电常数差异大,高重访率且对天气不敏感的星载被动微波遥感可实现湖冰冻融状态的快速监测。本数据集依据微波辐射计像元内湖泊和陆表的面积比例,应用混合像元分解方法获取了像元(亚像元级)的湖泊亮温信息,实现高亚洲地区被动微波遥感亚像元级湖冰冻融监测,并采用多种被动微波数据,共计获得高亚洲区域 2002-2016 年 51 个中大型时间序列湖泊亮温数据和冻融状态信息。以无云MODIS 光学产品为验证数据,在高亚洲不同区域,选取可可西里湖、达则错、库赛湖等三个大小不一的湖泊进行冻融判别验证,结果表明微波和光学遥感所获取的湖冰冻结和融化参数具有较高的一致性,其相关系数可达0.968 与 0.987。本数据集包含湖泊的时间序列亮温值和湖冰冻融参数,可进一步对湖泊开展特征参数反演,以及提升对高亚洲地区的湖冰冻融的理解,为高亚洲地区气候、环境变化以及高亚洲对全球气候变化响应模型提供数据基础。数据集由 2 部分数据组成,其一为 2002-2016 年高亚洲区域 51个湖泊的被动微波遥感亮温数据集,观测时间间隔为 1~2 天;其二是由湖泊亮温数据集判断所获得的湖冰冻融数据集。文件名分别为:最邻近法与像元分解的湖泊亮温数据 .zip(12 MB),2002–2016 高亚洲 51 个湖泊湖冰冻融数据集 .xls(0.1 MB)
邱玉宝
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件