1)数据内容包含65国植被覆盖与生物措施因子B栅格数据,空间分辨率为1km。2)基础数据源为2014~2016年的MODIS MOD13Q1产品,空间分辨率250m;24个半月降雨侵蚀力比例;上级子课题提供的土地利用类型。根据MOD13Q1产品计算得到3年平均的24个半月植被覆盖度栅格数据,然后按土地利用类型计算土壤流失比例,进一步利用24个半月的降雨侵蚀力进行加权平均,得到植被覆盖与生物措施B因子栅格图。3)MOD13Q1遥感植被数据侧重进行了去云预处理,计算的B因子按地类进行统计并进行合理性分析,最终取得的数据质量良好。4)植被覆盖与生物措施B因子反映了地表土地利用/植被覆盖对土壤侵蚀的影响,是65国的土壤侵蚀模拟及其空间格局分析的基础。
章文波
1)数据内容为65国平均降雨侵蚀力R栅格数据,空间分辨率为1km。2)数据源为Climate Prediction Center(CPC)发布的基于全球站点数据,基于此生成的0.5°×0.5°网格日降雨数据,从而计算了65国降雨侵蚀力R因子。3)采用中国气象局全国2358个气象站1986-2015年日降雨数据计算R值,对建立CPC数据源计算的R值进行复核修订,最终取得的数据质量良好。4)降雨侵蚀力R因子作为CSLE模型的动力因子,其数据可分析65国土壤侵蚀模拟及其空间格局分析,对于研究土壤侵蚀机理等具有重要意义。
章文波
泛极第三极20国土壤可蚀性因子(K)数据,基于国际土壤信息参比中心(International Soil Reference and Information Centre, ISRIC)网站(https://files.isric.org/soilgrids/latest/data/)下载的7.5弧秒分辨率土壤属性数据计算,所用数据包括土壤黏粒含量(%)、粉粒含量(%)、砂粒含量(%)、土壤有机碳含量(g/kg)、土壤质地类型。利用Wischmeier(1978)在USLE手册第二版中提出的土壤可蚀性因子算法、本项目研发的土壤可蚀性因子计算工具(K_Tool),计算得到与输入数据分辨率(1弧秒,尺度地区约25m)相同分辨率的土壤可蚀性因子图。泛第三极20国土壤可蚀性因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时也是分析泛第三极土壤特征的基础数据。
杨勤科
泛第三极20国坡度坡长因子(LS)数据集,基于公开的1弧秒分辨率SRTM数字高程数据(Shuttle Radar Topography Mission, SRTM;http://srtm.csi.cgiar.org),经过去接边、去除伪条纹等和滤波除噪等预处理,利用CSLE模型中的坡度坡长因子算法和本项目研发的坡度坡长因子计算工具(LS_Tool),计算得到7.5弧秒分辨率坡度坡长因子图。泛第三极20国坡度坡长因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时分析泛第三极20国侵蚀地形特征(如高程、坡度、坡度等宏观分布和微观格局)的基础数据,对于该地区地貌特征、地质灾害特征的分析,也具有参考价值。
杨勤科
1)数据内容包含重点区域20国植被覆盖与生物措施因子B栅格数据,空间分辨率为300米。2)基础数据源为2014~2016年的MODIS MOD13Q1产品,空间分辨率250m,据此计算得到3年平均的24个半月植被覆盖度栅格数据,然后按地类计算土壤流失比例,进一步利用24个半月的降雨侵蚀力进行加权平均,得到植被覆盖与生物措施B因子栅格图。3)MOD13Q1遥感植被数据侧重进行了去云预处理,计算的B因子按地类进行统计并进行合理性分析,最终取得的数据质量良好。4)植被覆盖与生物措施B因子反映了地表土地利用/植被覆盖对土壤侵蚀的影响,对重点区域20国的土壤侵蚀模拟及其空间格局分析具有重要意义。
章文波
1)数据内容包含重点区域20国2015年土壤侵蚀强度栅格数据,空间分辨率为300米。2)基于重点区域20国13000个调查单元数据,采用中国土壤侵蚀预报模型(CSLE),计算降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子以及耕作措施因子。然后按土类进行土壤侵蚀量插值并进一步进行强度分级,得到重点区域20国土壤侵蚀强度图。3)对土壤侵蚀强度数据进行空间格局合理性分析,数据质量良好。4)土壤侵蚀强度数据对理解重点区域20国土壤侵蚀空间格局及开展水土流失治理等具有重要意义。
章文波
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件