利用野外调查和文献调研收集到的青海沙蜥(Phrynocephalus vlangalii)分布点,结合五个来自于WorldClim数据库的气候因子,分别将当前(1960-1990年)和未来(2061-2080年)的气候数据输入训练好的物种分布模型,对当前和未来的适宜栖息地进行预测。预测结果表明,在青海沙蜥在气候变化下将会丧失大量原有栖息地,针对青海沙蜥的保护措施应重点关注青藏高原东缘,柴达木盆地北部和东部这些地区。模型也预测在气候变化后,新的适宜栖息地将在原本不适宜青海沙蜥生存的地区出现。然而,由于爬行动物的扩散能力非常有限(文献记录的最大年扩散距离不足500m),新出现的适宜栖息地不一定能被青海沙蜥利用。同时,通过野外工作收集三个海拔种群青海沙蜥的生理、生活史、行为及形态数据并结合微气候数据,利用机制生态位模型预测了气候变化在当前适宜分布区对青海沙蜥造成的生理后果。模型预测的结果表明,无论在SSP245还是SSP585气候变化情景下,青海沙蜥的活动时间在当前适宜分布区的大部分范围(> 93%)内都会增加,热安全阈在当前适宜分布区的所有地点都会减少。高海拔种群的活动时间增幅小于低海拔种群,而其热安全阈减少的幅度却大于低海拔种群。研究结果揭示了气候变化可能对分布在高海拔地区的蜥蜴种群造成更大影响。
曾治高
1)数据内容:柴达木盆地沙蜥属和麻蜥属物种名录及其分布数据,包含纲、目、科中文名、科拉丁名、属中文名、属拉丁名、种拉丁名、种中文名、国家、省、市县、镇乡等分布地;2)数据来源及加工方法:基于2007至2021年间对柴达木盆地干旱荒漠区两栖爬行动物野外科考,记录该地区沙蜥属和麻蜥属蜥蜴的物种组成和分布范围;3)数据质量描述:标本的调查、采集和鉴定人员均为专业人员,样品的采集信息经过核对,确保分布数据的质量;4)数据应用成果及前景:综合分析柴达木盆地沙蜥属和麻蜥属蜥蜴的物种多样性和分布数据,可以为西北荒漠区及亚洲中部干旱区生物多样性编目提供重要资料,为评估生物多样性格局及制定保护策略提供科学依据。
郭宪光
1)数据内容:塔里木盆地沙蜥属和麻蜥属物种名录及其分布数据,包含纲、目、科中文名、科拉丁名、属中文名、属拉丁名、种拉丁名、种中文名、国家、省、市县分布地;2)数据来源及加工方法:基于2008至2020年间对塔里木盆地干旱荒漠区两栖爬行动物野外科考,记录该地区沙蜥属和麻蜥属蜥蜴的物种组成和分布范围;3)数据质量描述:标本的调查、采集和鉴定人员均为专业人员,样品的采集信息经过核对,确保分布数据的质量;4)数据应用成果及前景:综合分析塔里木盆地沙蜥属和麻蜥属蜥蜴的物种多样性和分布数据,可以为为亚洲中部干旱区生物多样性编目提供重要资料,为评估生物多样性格局及制定保护策略提供科学依据。
郭宪光
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2014年5月10日开始,9月11日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.1.2其它四个站:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 其它四个站:2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.1.2芦苇:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
于文凭, 耿丽英, 李艺梦, 谭俊磊, 马明国
数据为塔里木河流域10万沙漠分布图,本数据以2000年TM影像为数据源,进行解译、提取、修编,利用遥感与地理信息系统技术结合1:10万比例尺成图要求,对沙漠、沙地和砾质戈壁进行专题制图。数据属性表:area(面积)、perimeter(周长)、ashm_(序列码)、class(沙漠编码)、ashm_id(沙漠编码)其中沙漠编码如下:流动沙地 2341010、半流动沙地 2341020、半固定沙地 2341030、戈壁 2342000、盐碱地 2343000
王建华
数据为青海湖流域10万沙漠分布图,本数据以2000年TM影像为数据源,进行解译、提取、修编,利用遥感与地理信息系统技术结合1:10万比例尺成图要求,对沙漠、沙地和砾质戈壁进行专题制图。数据属性表:area(面积)、perimeter(周长)、ashm_(序列码)、class(沙漠编码)、ashm_id(沙漠编码)其中沙漠编码如下:流动沙地 2341010、半流动沙地 2341020、半固定沙地 2341030、戈壁 2342000、盐碱地 2343000。
王建华, 颜长珍
数据为天山北麓诸河流域10万沙漠分布图,本数据以2000年TM影像为数据源,进行解译、提取、修编,利用遥感与地理信息系统技术结合1:10万比例尺成图要求,对沙漠、沙地和砾质戈壁进行专题制图。数据属性表:area(面积)、perimeter(周长)、ashm_(序列码)、class(沙漠编码)、ashm_id(沙漠编码)其中沙漠编码如下:流动沙地 2341010、半流动沙地 2341020、半固定沙地 2341030、戈壁 2342000、盐碱地 2343000。
王建华, 颜长珍
数据为柴达木河流域10万沙漠分布图,数据切割自中国1:10万沙漠沙地数据集,数据以2000年TM影像为数据源,进行解译、提取、修编,利用遥感与地理信息系统技术结合1:10万比例尺成图要求,对沙漠、沙地和砾质戈壁进行专题制图。数据属性表:area(面积)、perimeter(周长)、ashm_(序列码)、class(沙漠编码)、ashm_id(沙漠编码)其中沙漠编码如下:流动沙地 2341010、半流动沙地 2341020、半固定沙地 2341030、戈壁 2342000、盐碱地 2343000。
王建华
该数据集是将沙漠专题地图的图形数据建立的我国第一个1∶10万沙漠空间数据库,重点反映我国沙漠的地理分布、面积大小、沙丘的流动性与固定程度。按照系统设计要求及有关标准,将输入数据进行标准化,统一转换为各类数据输入的标准格式。建库以交付系统运行。 本项目以2000年的TM影像为信息源,在全国土地利用现状图的Coverage和2000年TM数字影像信息,进行解译、提取、修编,利用遥感与地理信息系统技术结合以1:10万比例尺专题图成图要求,对我国的沙漠、沙地和砾质戈壁进行了专题制图。1∶10万全国沙漠分布图可以使用户在从事资源与环境的研究工作时节省大量的数据录入和编辑工作。数字地图能非常方便地转化为版式地图 数据集属性如下: 分为e00和shp两个文件夹: 文件夹内各省沙漠分布图名称与省份对照表 01 Ahsm 安徽省 02 Bjsm 北京市 03 Fjsm 福建省 04 Gdsm 广东省 05 Gssm 甘肃省 06 Gxsm 广西壮族自治区 07 Gzsm 贵州省 08 Hebsm 河北省 09 Hensm 河南省 10 Hljsm 黑龙江省 11 Hndsm 海南省 12 Hubsm 湖北省 13 Jlsm 吉林省 14 Jssm 江苏省 15 Jxsm 江西省 16 Lnsm 辽宁省 17 Nmsm 内蒙固自治区 18 Nxsm 宁夏回族自治区 19 Qhsm 青海省 20 Scsm 四川省 21 Sdsm 山东省 22 Sxsm 陕西省 23 Tjsm 天津市 24 Twsm 台湾省 25 Xjsm 新疆维吾尔自治区 26 Xzsm 西藏自治区 27 Zjsm 浙江省 28 Shxsm 山西省 1、数据投影: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2、数据属性表:area(面积) perimeter(周长) ashm_(序列码) class(沙漠编码) ashm_id(沙漠编码) 3、沙漠编码:流动沙地 2341010 半流动沙地 2341020 半固定沙地 2341030 戈壁 2342000 盐碱地 2343000 4:文件格式:全国、分省及县级沙漠图的数据类型为矢量型的shapefile和E00 5:文件命名: 基于国家基本资源与环境遥感动态信息服务系统数据组织在Windows NT的文件管理层面上进行,文件和目录名采用英文字和数字的复合名称,分省沙漠图以省、区名拼音+SM构成,如甘肃省沙漠分布图即为GSSM。旗、县沙漠图为省区名拼音+xxxx,xxxx为旗、县代码后四位数值,如兰州沙漠图命名为GS0101。省、区和旗、县的分幅切割以国家级基本资源与环境遥感动态信息服务运行系统中的行政区划数据文件为据。
王建华, 王一谋, 颜长珍, 祁元
该数据来源于中科院沙漠研究所(现中科院寒旱所)编制的巴丹吉林1:50万风沙地貌数据集。 数据集主要包括:dimao(地貌),height(沙丘高度),lake(湖泊),lvzhou(绿洲),river(河流),road(道路)。
朱震达, 王一谋, D.杰凯尔, J.霍弗曼
沙漠化是我国北方干旱、半干旱及部分半湿润地区由于人地关系不相协调所造成的以风沙活动为主要标志的土地退化。 数据源:中国冰川冻土沙漠研究所编绘,中国科学院地理研究所协作,根据七十年代航片,加上实地调研,绘制的1:200万沙漠图,图中中国国界是根据地图出版社一九七一年出版的1:400万《中华人民共和国地图》地图绘制。 一、数据集内容 1、Desert_Ch_2009(沙漠分布) 2、Dune_hight_Ch_200(沙丘高度) 3、Gobi_Ch_200(戈壁) 4、Wind_eroded_land_Ch_200(风蚀地数据) 二、沙漠化属性表字段如下: (1)Semifixed(半固定沙丘):缓起伏沙地(2-1)、灌丛沙丘(2-2)、抛物线状沙丘(2-3)、梁窝状沙丘(2-4)、沙垄及树枝状沙垄(2-5)、蜂窝状沙丘(2-6)、蜂窝状沙垄(2-7)、复合型沙垄(2-8) (2)Fixation(固定沙丘):平沙地(3-1)、草原丛沙堆(3-2)、沙垄(3-3)、蜂窝状沙丘(3-4) (3)Migratory(流动沙丘):新月形沙丘及沙丘链(1-1)、新月形沙垄及沙垄(1-2)、格状沙丘及格状沙丘链(1-3)、鱼鳞状沙丘(1-4)、羽毛状沙垄(1-5)、金字塔沙丘(1-6)、复合型沙丘及沙丘链(1-7)、复合型沙垄(1-8)、复合型穹状沙丘(1-9)、链状沙山(沙丘)(1-10)、迭置型链状沙山(1-11)、复合型垄状沙山(1-12)、复合型链状沙山(1-13)、金字塔形沙山(1-14) (4)class_id:沙化属性编码 三、投影信息 PROJCS["Albers", GEOGCS["GCS_Beijing_1954", DATUM["Beijing_1954", SPHEROID["Krasovsky_1940",6378245.0,298.3]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Albers_Conic_Equal_Area"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",105.0], PARAMETER["Standard_Parallel_1",25.0], PARAMETER["Standard_Parallel_2",47.0], PARAMETER["latitude_of_center",0.0], UNIT["Meter",1.0]]
王建华
冻土图的编制依据包括:(1)冻土野外调查、勘探实测资料;(2)航空像片和卫星影像判译;(3)TOPO30 1km分辨率的地面高程数据;(4)气温和地面温度资料。其中,青藏高原的冻土分布采用了南卓铜等(2002)的研究结果,利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布。以年平均地温0.5 ℃作为多年冻土与季节冻土的界限,参考《中国冰雪冻土图》(1:400万)(施雅风 等,1988)划定高原不连续多年冻土与高原岛状多年冻土的界限;另外,参考东北大小兴安岭多年冻土分区图(郭东信 等,1981)、环北极多年冻土和地下冰分布图(Brown et al. 1997)和最新野外实测资料,对东北的多年冻土界线进行了修订;西北高山多年冻土界线多采用了《中国冰雪冻土图》(1:400万)(施雅风 等,1988)中划定的界线。 根据该数据统计的中国多年冻土区面积约1.75×106km2,约占中国领土的18.25%。其中,高山多年冻土0.29×106km2,约占我国领土面积的3.03%。 更多信息参考《1:400万中国冰川冻土沙漠图》说明书(中国科学院寒区旱区环境与工程研究所,2006)
王涛
一、该数据数字化自图纸的《大沁他拉沙漠化发展程度图(1974)》,该图的具体信息如下: * 主编:朱震达、邱醒民 * 编辑 :王一谋 * 制图:冯毓荪、姚发芬、吴薇、王建华、王周龙 * 制图单位:中国科学院沙漠研究室编制 * 出版社:西安地图出版社出版,统一书号:12461.26 二、数据均以ESRI Shapefile格式储存,包括以下图层: 1、 * 沙漠化发展程度图(1974):desertification1974.shp 2、双线河:River_double.shp 3、 单线河:River_single.shp 4、道路:Road.shp 5、 湖泊:Lake.shp 6、街道:Stree.shp 7、 铁路:Railway.shp 8、林带:Tree_networks.shp 9、居民地:residential.shp 10、图廓:map_margin.shp 三、沙漠化发展程度图属性字段及编码属性:(1)沙化程度(Type):半流动沙地(Semi-shifting Sandy Land),沙地形态类(Shapes),草地(Grassland),林地(Woodland) ,林地疏密度(W_density),耕地(Farmland) (2)沙地形态类(Shapes):新月形沙丘(Barchan Dunes),平沙地(Flat Sandy Land),缓起伏沙地(Undulating Sandy Land),灌丛沙堆(Vegetated Dunes) (3)草地(Grassland) (4)林地(Woodland):灌木林(Woodland) (5)林地疏密度(W_density):疏林地(Sparse Woodlot) (6)耕地(Farmland):旱作农田及弃耕地(Dryfarming and Abandoned Farmland),灌溉农田(Irrigated Fields)
王建华, 朱震达, 邱醒民, 冯毓荪, 姚发芬
一、该数据数字化自图纸的《大沁他拉沙漠化发展程度图(1958)》,该图的具体信息如下: * 主编:朱震达、邱醒民 * 编辑 :王一谋 * 制图:冯毓荪、姚发芬、吴薇、王建华、王周龙 * 制图单位:中国科学院沙漠研究室编制 * 出版社:西安地图出版社出版,统一书号:12461.26 二、数据均以ESRI Shapefile格式储存,包括以下图层: 1、 * 沙漠化发展程度图(1958):desertification1958.shp 2、双线河:River_double.shp 3、 单线河:River_single.shp 4、道路:Road.shp 5、 湖泊:Lake.shp 6、街道:Stree.shp 7、 铁路:Railway.shp 8、林带:Tree_networks.shp 9、居民地:residential.shp 10、图廓:map_margin.shp 三、沙漠化发展程度图属性字段及编码属性:(1)沙化程度(Type):半流动沙地(Semi-shifting Sandy Land),沙地形态类(Shapes),草地(Grassland),林地(Woodland) ,林地疏密度(W_density),耕地(Farmland) (2)沙地形态类(Shapes):新月形沙丘(Barchan Dunes),平沙地(Flat Sandy Land),缓起伏沙地(Undulating Sandy Land),灌丛沙堆(Vegetated Dunes) (3)草地(Grassland) (4)林地(Woodland):灌木林(Woodland) (5)林地疏密度(W_density):疏林地(Sparse Woodlot) (6)耕地(Farmland):旱作农田及弃耕地(Dryfarming and Abandoned Farmland),灌溉农田(Irrigated Fields)
王建华, 朱震达, 邱醒民, 姚发芬, 冯毓荪
该数据数字化自图纸的《奈曼旗沙漠化类型及土地整治区划图》,该图的具体信息如下: * 主编:朱震达、邱醒民 * 编辑 :冯毓荪 * 复照与制图:冯毓荪、刘扬宣、文子祥、杨泰运、赵爱芬、王一谋、李伟民、赵燕华、王建华 * 野外考察:邱醒民、张继贤 * 制图单位:中国科学院沙漠研究室编制 * 出版社:上海中华印刷厂 * 比例尺:1:150000 * 出版时间: 1984年5月 * 图例:严重沙漠化土地、强烈发展的沙漠化土地、正在发展中的沙漠化土地、潜在沙漠化土地、非沙漠化土地、波状起伏沙黄土平原、树林及灌木林、盐碱地、山地、耕地、甸子地 2、文件格式与命名 数据均以ESRI Shapefile格式储存,包括一下图层: 奈曼旗沙漠化类型图、河流、 道路、水库、铁路、区划 3、数据属性 沙化等级类 植被 本底类 正在发展中的沙漠化土地 耕地 沙丘 盐碱地 甸子地 严重沙漠化土地 水库 树林及灌木林 山地 强烈发展的沙漠化土地 潜在的沙漠化土地 湖泊 非沙漠化土地 波状起伏沙黄土平原 2、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
朱震达, 邱醒民, 冯毓荪, 赵燕华, 王建华, 赵爱芬, 王一谋, 李伟民, 张继贤, 刘扬宣, 文子祥
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件