土壤呼吸是陆地生态系统仅次于光合作用的碳通量,土壤生物化学过程CO2和δ13C产生与输送是土壤呼吸量级与过程评价的制约因素。根据土壤生物化学过程CO2气体产生和输送特点,基于稳定同位素红外光谱技术,自主研发非线性在线标定技术、多通道双循环的高效循环气路、气体浓度预降低的高效循环气路、可模拟冻融过程的变温技术;集成创新研制分别针对土壤-大气界面气体交换过程、土壤内部气体垂直运移过程和土壤有机质分解过程的三套CO2及其δ13C浓度和通量观测系统,并在生态脆弱区开展观测示范,有效解决了土壤生物化学过程CO2的产生、运移与释放的综合监测难题。 土壤和大气δ13C廓线协同观测系统:针对大气和土壤CO2气体浓度差异较大而土壤CO2气体浓度非常高的难题,利用旁路系统零气降低气路内CO2气体浓度的方式,消除“死气”对观测结果的干扰。通过旁路系统零气动态稀释的方式将气体分析仪最佳测试区间从300-2000 ppm拓展为300-80000 ppm,达到项目的核心技术指标要求。从技术创新上首次实现了低浓度与高浓度兼顾的在线标定系统,解决仪器非线性响应与时间漂移和多通道双循环的气路设计和CO2浓度预降低气路设计,有效解决管路长导致气路切换效率低的问题。 研制设备平均国产化率 80%以上,已运用于森林、草地、和农田等生态系统的自动化监测,实现我国生态监测技术的自主创新与升级换代,可以推广到CERN、CFERN和CNERN以及其它相关部门类似的野外台站,有助于大幅提升我国对生态监测与评估的科技研发能力、水平和国际影响力,有效支撑我国陆地生态系统固碳速率及潜力评估与认证,为国家生态文明建设、碳达峰碳中和以及生态安全调控提供技术支撑。
孙晓敏
土壤呼吸是陆地生态系统仅次于光合作用的碳通量,土壤生物化学过程CO2和δ13C产生与输送是土壤呼吸量级与过程评价的制约因素。根据土壤生物化学过程CO2气体产生和输送特点,基于稳定同位素红外光谱技术,自主研发非线性在线标定技术、多通道双循环的高效循环气路、气体浓度预降低的高效循环气路、可模拟冻融过程的变温技术;集成创新研制分别针对土壤-大气界面气体交换过程、土壤内部气体垂直运移过程和土壤有机质分解过程的三套CO2及其δ13C浓度和通量观测系统,并在生态脆弱区开展观测示范,有效解决了土壤生物化学过程CO2的产生、运移与释放的综合监测难题。 多通道双循环土壤呼吸δ13C观测系统:研发CO2及其δ13C 分析仪的多浓度的非线性响应的在线标定系统,确保仪器的精度和准确度;研发多通道气路间的双泵双循环的CO2及其δ13C高效循环气路,通过待测通道气体预混,最大限度地降低了切换时间并消除了“死气”对观测结果的干扰;基于模拟通量验证系统测试表明CO2和δ13C模拟通量结果均优于0.32 μmol m-2 s-1 @ 10 μmol m-2 s-1 (CO2)和0.52‰ @ 10 μmol m-2 s-1 (CO2),优于项目的核心技术指标要求。 该设备平均国产化率 80%以上,已运用于森林、草地、和农田等生态系统的自动化监测,实现我国生态监测技术的自主创新与升级换代,可以推广到CERN、CFERN和CNERN以及其它相关部门类似的野外台站,有助于大幅提升我国对生态监测与评估的科技研发能力、水平和国际影响力,有效支撑我国陆地生态系统固碳速率及潜力评估与认证,为国家生态文明建设、碳达峰碳中和以及生态安全调控提供技术支撑。
孙晓敏
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件