本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
本数据为盈科绿洲农田观测的一个生长周期内的ASTER植被覆盖度数据集。数据观测从2012年5月30日开始到9月12日结束。 原始数据: 1、 ASTER的15m分辨率L1B反射率产品 2、 中游人工绿洲生态水文试验区植被覆盖度数据集 数据处理: 1、 对ASTER反射率产品进行预处理得到ASTER NDVI; 2、 通过NDVI-FVC非线性转换形式,利用ASTER NDVI与地面实测FVC得到不同时相的ASTER尺度下NDVI到FVC的转换系数; 3、 将此系数应用到ASTER影像上,得到15m分辨率的植被覆盖度; 4、 将15m分辨率ASTER FVC聚合,得到1km ASTER FVC产品
黄帅, 马明国
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件