作物物候是指农作物达到关键生育期时对应的日期。华北平原的主要种植模式是冬小麦和夏玉米轮作,冬小麦和夏玉米关键物候期的变化反映了其生长发育对气候条件和生产管理措施的响应情况和适应性,是评估该地区作物生长状态、灌溉耗水情况的关键参数。 本研究以华北平原冬小麦-夏玉米稳定种植区为研究范围,使用1982-2015年GIMMS3g NDVI数据,综合曲线最大值、最小值、斜率、百分量值等多个特征参数,提取了冬小麦和夏玉米的关键物候期:开始日(SOS),峰值日(PEAK)和结束日(EOS)。提取物候与农气站点记录物候期进行对比,R²在0.9以上,准确度高。(详细过程请见参考文献) 该物候数据集可应用于该地区计算冬小麦和夏玉米生产力、对气候变化响应、灌溉耗水量估算等相关研究。
雷慧闽
华北平原是我国重要的粮食产区,耕地面积广大,种植结构复杂,准确识别该地区典型农作物分布,及时追踪种植结构的动态变化,是检测作物生长、评估作物灌溉耗水和优化农业水资源配置的重要基础。 本研究使用遥感MOD13Q1 NDVI数据,经傅里叶变换后选取0-5级谐波的振幅和初相位作物分类底图。基于现场调研的实测样本点和最大似然监督分类,识别了2001-2018年华北平原6类典型作物(冬小麦-夏玉米、冬小麦-水稻、其他双峰类作物、春玉米、棉花、其他单峰类作物)的种植区分布。识别结果经过混淆矩阵、与县级统计年鉴的冬小麦播种区比较以及与Landsat提取冬小麦占比比较进行了精度评价,均表现良好,准确度高。(详细过程请看参考文献) 数据可被应用于华北平原作物生产、灌溉耗水估算、地下水保护等相关研究分析。
雷慧闽
本数据集基于2020年对西藏一江两河区、藏东南、川西藏东横断山区农田生产经营管理实地调查的数据。样本选择对西藏一江两河区、藏东南、川西藏东横断山区, 首先,运用典型抽样方法,确定样本县、样本镇、样本村; 然后根据农户的基本情况,在每个县抽取1个样本乡镇,每个乡镇抽取1个样本村,最后,运用随机抽样方法,在每个样本村随机抽取1个农户。该数据集访问记录了调查地块的基本信息,受访农户的基本情况,包括受教育水平、消费水平等信息,农业种植面积等。该数据集为实地调查、访问获得数据,可用于分析青藏高原农业种植基本情况分析,为进一步完善政府扶持政策的对策建议提供理论依据。
唐亚伟
本次调查区域覆盖四川泸定,康定,雅江,理塘,巴塘等地区,涉及作物包括青稞、小麦、玉米、土豆及番茄等露地蔬菜,采用干漏斗法提取,共获得中小型土壤动物样品171份,捕获土壤动物800余只。样品保存于中国科学院成都生物研究所,样品采集后借助体式显微镜鉴定,其中,以四川巴塘地区的0-15cm 土层数量最多,鉴定有208只中小型土壤动物;其次是四川康定的0-15 cm 土层,观察到有130只中小型土壤动物。
孙晓铭
该数据集为青藏高原主要农作物青稞和小麦的产量历史数据,包括要素为播种面积和产量,涵盖年份包括1988年-2018年,涵盖区域包括青藏高原范围内部分州市及区县。数据来源于《西藏统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《甘肃统计年鉴》、《云南统计年鉴》及阿坝藏族羌族自治州和甘孜藏族自治州农牧局,精度同数据摘取的统计年鉴。青稞和小麦是青藏高原主要的农作物,该数据集对于研究青藏高原粮食安全、农业生产等方面具有重要价值。
潘志芬
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
该数据来源于青藏高原农田生态系统科考队于2020年开展野外调查获取的无人机影像资料,调查区域涉及四川、西藏318沿线的农田生态系统集中区县,包括四川的理塘、巴塘,西藏的八宿、林芝、日喀则的江孜、白朗等区域,记录地物对象包括青稞、小麦等传统农作物,以及部分区域的露地蔬菜、设施大棚;飞行高度一般在50-300m,分辨率较高,拍摄设备为大疆御2Pro,图片自带GIS经纬度、海拔等信息,可用于卫星遥感的地面参考或校正数据。
伍小刚
该数据集为青藏高原农业生产经营管理历史数据,从青藏高原地区各市州的历年统计年鉴中收集整理,经过电子化后提取汇总而成;该数据包含了青藏高原范围内部分区县1995-2018年的农田有效灌溉面积数据。农田有效灌溉面积是重要的生产经营管理指标,青藏高原地区是典型的旱作农业为主,绝大部分地区农业灌溉以自然降水为主,人工灌溉所覆盖的区域较少,该数据对于分析青藏高原农田生态系统水资源利用、水足迹等有重要意义,数据以县为单位进行的统计,其结果可到县域尺度。
何秀林
本数据集为非洲萨赫勒地区1990-2020年每5年1期的30m土地利用/覆盖分类产品。该产品基于一套集合机器学习和多元数据融合的土地覆盖分类协同框架,利用谷歌地球引擎 (GEE) 云计算平台,将监督土地覆盖分类和现有多个主题土地覆盖图融合生产而成。分类体系采用FROM_GLC分类体系,包括耕地、森林、草地、灌丛、湿地、水体、不透水面和裸地共8大类。该数据集经过大量萨赫勒区域全季节样本验证,数据集整体准确率在75%左右,变化区域检测的准确率在70%以上,也与粮农组织和现有的土地覆盖图有很好的相似性。该数据集可为非洲萨赫勒地区土地资源可持续利用和环境保护等提供数据支撑。
俞乐
祁连山北麓黑河流域中游张掖盆地玉米产量预测数据(2001-2015)是基于生态水文耦合模型HEIFLOW模拟结果将张掖市的实际玉米产量数据降尺度得到的。HEIFLOW模型是一个三维分布式生态水文模拟,由一个地表水模型(PRMS)、一个地下水模型(MODFLOW)和几个生态模块组成,能较为完整的描述流域水循环和植被生态过程。生成此数据的建模细节请参考Han et al. (2021),关于HEIFLOW模型的技术细节请参考Han et al. (2021),Tian et al. (2018)和Sun et al. (2018).
郑一, 韩峰, 田勇
本数据集包括青藏高原区域内甘肃、青海、四川、西藏、新疆和云南2000-2015年的社会、经济、资源等相关指标数据,数据来源于《甘肃统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《西藏统计年鉴》、《新疆统计年鉴》、《云南统计年鉴》、《中国县(市)社会经济统计年鉴》以及中经网、国泰安等。统计尺度为县级单元尺度,包括甘肃省的玉门市、阿克塞哈萨克自治区、肃北蒙古族自治县等26个县级单位,青海省的德令哈市、乌兰县、天峻县等41个县级单位,四川省的石渠县、若尔盖县、阿坝县等46个县,西藏的日土县、改则县、班戈县等78个县,新疆省的乌恰县、阿克陶县、莎车县等14个县,云南省的德钦县、中甸县、福贡县等9个县;变量包括县域GDP、第一产业增加值、第二产业增加值、第三产业增加值、规模以上工业企业工业总产值、社会消费品零售总额、居民储蓄存款余额、粮食产量、农作物总播种面积、普通中学在校生数和土地面积。该数据集可用于青藏高原社会、经济、资源状况评价等。
陈义忠
河湟谷地是青藏高原最主要的农业发展区之一,尤其到了清朝,该区土地覆被发生了重大变化,通过整理、校正该区历史文献中记载的1726年田亩数据,以期为揭示青藏高原典型河谷农业区耕地变化和人类活动的基本状况提供理论依据。本数据包含河湟谷地1726年耕地空间分布格局栅格数据,空间分辨率为1km×1km。1726年河湟谷地耕地数据主要来自于成书于乾隆二十年的《西宁府新志》、《循化厅志》《甘肃新通志》。县域行政界线的确定参考谭其骧主编的《中国历史地图集》及牛汉平主编的《清代政区沿革综表》。搜集耕地数据后将原始田亩数据进行校正,将历史耕地数据转换为统一的现代单位(km2),后采用网格化模型将耕地数据进行空间化。
刘峰贵, 罗静
青藏高原海拔高、气候寒冷,自然条件恶劣,生态环境极其脆弱,是全球气候变化的脆弱区和启动区,对青藏高原历史时期的土地开垦研究既是参与全球环境变化的具体途径,也能为土地利用变化的综合研究提供丰富的区域性信息,对于我国乃至全球的历史土地利用/土地覆被变化研究有着重要意义。“一江两河”是青藏高原农牧交错带典型农业区之一,也是西藏近 300 年来土地开垦活动最剧烈和人口增长最快的区域,充分挖掘该地区丰富的历史文献资料重建该地区过去300 年的耕地分布格局,对研究全球气候变化背景下的人类土地利用活动有重要意义。1730年耕地数据主要来源于《铁虎清册》。将资料中记载的土地面积换算成现代亩制单位,某几个缺失的县用该地区的人均耕地数量和人口数量计算得到。
刘峰贵, 顾锡静
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
青藏高原作为世界屋脊,亚洲水塔,世界第三极,是中国乃至亚洲重要的生态安全屏障。随着社会经济的快速发展,人类活动明显增加,对生态环境的影响越来越大。选取耕地、建筑用地、国道、省道、铁路、高速公路、GDP和人口密度8个因素为威胁因子,并基于专家打分法确定威胁因子的属性,对青藏高原生境质量进行评估,从而获得1990、1995、2000、2005、2010和2015年共6期青藏高原农牧区生境质量的数据集。制作生境质量的数据集将有助于探索青藏高原的生境质量,并为政府制定青藏高原的可持续发展政策提供有效支持。
刘世梁, 刘轶轩, 孙永秀, 李明琦
该数据集由2020年8月青藏高原野外考察期间无人机航拍所得,数据大小为10.1 GB,包括1500余张航片。拍摄地点主要包括拉萨、山南、日喀则等地区道路沿线、居民点及周边地区。航片主要反映了当地土地利用/覆被类型、设施农业分布、草地盖度情况等信息,航片均具有经纬度和海拔信息,可为土地利用/覆被遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区域土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
该数据集包含了2017年1月1日至2017年12月31日的黑河水文气象观测网中游大满超级站涡动相关仪观测数据。站点位于甘肃省张掖市大满灌区内,下垫面是玉米。观测点的经纬度是100.37223E, 38.85551N,海拔1556.06m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。4月3日-4日涡动系统的Li7500A进行标定,8月29日-9月5日采集器的问题,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为三级(质量标识0:(Δst <30, ITC<30); 1: (Δst <100, ITC<100); 其余为2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2017年1月1日至2017年12月31日黑河水文气象观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2017.6.8-7.2由于传感器的问题,土壤热通量G2出现错误;2017.8.31-9.11由于采集器的问题,气象部分数据出现错误; 2017.9.19-10.15日由于采集器问题,土壤部分数据出现错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2017-6-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件