全球年度湖泊冰物候数据集包括北半球74245个湖泊的冻结日期和破裂日期。数据集分为三部分: 1:当前时间段数据,通过DLRM模型(提供了参数)从MODIS产品中获得,涵盖2001年至2020年74245个湖泊的冻融时间; 2-3: 历史(2)和未来(3)两个时间段湖泊冻融模拟,分别从1861-2005年和2006-2099年的基于温度的湖泊特定模型中获得(详见论文)。历史和未来的模拟仅针对30063个满足模型条件的湖泊。
王欣驰
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
全球雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2018年,时间分辨率为逐日,覆盖范围为全球,空间分辨率为25,067.53 m。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明全球雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和1383*586的雪深矩阵组成,每个雪深代表一个25,067.53m*25,067.53m的格网。该数据的投影方式为EASE-Grid,下面是每个文件的文件头,将其加到每个文件的前面可以将数据在arcgis中显示。 ncols 1383 // 数据矩阵共1383列 nrows 586 // 数据矩阵共586 xllcorner -17334193.54 //矩阵x方向左下角网格的角落点坐标 yllcorner -7344787.75 //矩阵y方向轴左下角网格的角落点坐标 cellsize 25,067.53 //每个网格的大小 NODATA_value -1 //缺省值
车涛, 李新, 戴礼云
全球Cryosat-2 GDR数据集由欧空局(ESA)制作,数据覆盖时间从2010年到2016年,覆盖范围为全球。 2010年4月8号,ESA发射了Cryosat - 2高倾斜极轨卫星。该卫星上搭载了合成孔径干涉雷达高度计SIRAL,主要用于监测极地的冰层厚度和海冰厚度变化,进而研究极地冰层的融化对全球海平面上升的影响,以及全球气候变化对南极冰厚的影响。这种高度计工作在Ku波段,工作频率为13.575 GHz,包括3种测量模式:一是低分辨率指向星下点的高度计测量模式(LRM),可获得陆地、海洋和冰盖所有表面观测值,它的处理过程与ENVISAT/RA - 2 类似,沿轨分辨率为5到7 km;二是合成孔径雷达(SAR)测量模式,主要为提高海冰观测精度和分辨率,可使沿轨分辨率达到250 m左右;三是干涉合成孔径雷达模式(InSAR),主要为提高冰盖或冰架边缘等地形复杂区域精度。 Cryosat -2/SIRAL数据产品主要包括0级数据、1b级数据、2级数据和高级数据。Cryosat - 2/SIRAL产品由XML头文件(.HDR)和数据产品文件(.DBL)两个文件组成,HDR文件是辅助性的ASCII文件,用于快速识别检索数据文件。1b级产品是按照测量模式分开存储的,不同模式的数据记录格式也有所不同。LRM模式和SAR模式的每个波形有128个采样点,SARIn模式的波形则有512个采样点。2级GDR产品可以满足大多数的科学研究应用,包括了测量时间、地理位置、高度等信息。并且,GDR产品中的高度信息已经经过了仪器校正、传输延迟改正、几何改正和地球物理改正(如大气改正与潮汐改正)。GDR产品是单独的全球性的全轨道数据,即三种模式的测量结果,经过不同的处理过程后,按照时间先后顺序,合并到一起,从而统一了数据记录格式。三种模式的数据采用了不同的波形重跟踪算法来获得高度值,在最新更新的Baseline C数据中,LRM模式的数据采用了3种算法,分别为Refined CFI、UCL和Refined OCOG。
沈国状, 傅文学
本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。
邱玉宝
地表微波发射率表征了地物向外发射微波辐射的能力,星载被动微波发射率可在宏观、大尺度上对陆表微波辐射进行整体表达,是被动微波地表参数定量反演中经验参数获取的重要基础数据,也是在大尺度上理解陆表微波辐射的一种途径。本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。 此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。 所生产出的所有陆表发射率数据按照以下规则命名: RADI_AMSRE_EM##_yyymmdd_EG_V##.bin 例如文件名称:RADI_AMSRE_EM01_20060101_EG_V#其中 EM##: 01表示每日,05表示5天,10表示旬,HM表示半月,MO表示月 yyyymmdd: yyyy表示年份,mm表示月份,dd表示日期 V##: 版本号,如0.1, 1.0等,个位数为正式版 RADI: “中国科学院遥感与数字地球研究所”英文缩写 AMSRE: 高级微波扫描辐射计
邱玉宝
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件