全球3小时河道洪水再分析数据GRFR,包括1)1980-2019年全球0.05度,3小时/日格点陆面产流数据。2)全球294万条河段(基于90m数字高程模型提取),3小时/日天然径流模拟数据。3)全球3小时河道洪水事件数据。4)基础地形数据MERIT-Basins。 该数据集以分布式水文模型VIC和河道汇流模型RAPID为模型链核心,集合一系列多源数据和模型手段构建的全球高分辨率高精度天然河川径流模拟系统模拟而成。基于美国6000余个站点3小时和全球14000余个站点日径流观测资料的精度评估表明,该数据能够较好地再现3小时和日尺度径流过程,同时能够较好地捕捉洪水事件。详细过程请参阅参考文献。 该数据集为遥感卫星径流反演算法开发、全球洪水特性分析和物理机制分析尤其是无资料地区提供了强有力的新数据支撑。
杨媛, 潘铭, 林佩蓉
全球294万条河段的天然径流量模拟数据产品,单位m3/s。本数据是基于VIC水文过程模式与RAPID矢量河网汇流模型模拟得到。其中陆面水文过程模式空间分辨率为0.25°,矢量汇流模式中的河网数据基于90-m MERIT Hydro水文矫正地形数据产品提取。产流部分经过基于机器学习得到的径流特征值进行参数率定,并基于多分位数径流特征值进行了格点尺度的产流偏差矫正,经全球1.4万个径流观测站点验证,数据产品具有较优的验证精度。
林佩蓉, 潘铭, 杨媛
该数据集为全球植被生产力数据,包含总初级生产力(GPP)、净初级生产力(NPP)和净生态系统生产力(NEP)3部分,由耦合模式比较计划第6阶段(CMIP6)中BCC-ESM1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为2.8125°。模拟数据详细说明可见链接https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.BCC.BCC-ESM1。
郑周涛
该数据集为全球呼吸数据,包含自养呼吸(ra)和异养呼吸(rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中TaiESM1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为0.9°x1.25°。模拟数据详细说明可见链接https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.AS-RCEC.TaiESM1.historical。
美国气候模式诊断和对比计划委员会
本数据集来源于论文:He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., Bryan., B.A. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12, 4667。本数据集包括2020-2070年全球不同共享社会经济路径下的城市建成区信息。本数据集的制作流程主要包括:(1)基于全球1992-2016年城市建成区数据(下载地址:https://doi.pangaea.de/10.1594/PANGAEA.892684)和城市人口数据建立线性回归模型,计算未来城市建成区的数量需求;(2)使用LUSD-urban模型模拟未来城市建成区的空间格局。该数据集能够为评估全球未来城市扩展过程的影响提供数据支撑。
何春阳, 刘志锋, 杨延杰
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
(1)数据内容:全球气候-生态格局演变产品。时间范围包括历史时期1981-2020,空间分辨率0.5°,未来时期2021-2100(未来时期包含四个不同共享社会经济路径:SSP126,SSP245,SSP370,SSP585),空间分辨率1°,每20年1期。 (2)数据来源及加工方法:历史时期选用GLOBMAP 的叶面积指数数据为基础,未来时期融合三个CMIP6模式(ACCESS-ESM1-5,CanESM5,UKESM1-0-LL)的叶面积指数数据。通过多元线性回归构建温度、降水和辐射与叶面积指数之间的关系,提取相应的系数来表征各气候变量对叶面积指数的影响程度,最后通过RGB映射图来表征叶面积指数的气候因素的影响系数。 (3)数据质量描述:全球20年1期,历史时期2期(1981-2000;2001-2020),未来时期共包含四个共享社会经济路径(SSP126,SSP245,SSP370,SSP585),每个路径下4期(2021-2040;2041-2060;2061-2080;2081-2100)。 (4)数据应用成果及前景:该数据可用于气候变化背景下的植被和生态系统演变相关研究。
何斌
光合作用是连接碳和水循环的关键过程,卫星检索的日光诱导叶绿素荧光 (SIF) 可以作为光合作用的有价值的代理。Copernicus Sentinel-5P 任务上的TROPOspheric Monitoring Instrument (TROPOMI) 能够显着改进提供高空间和时间分辨率的 SIF 观测,但数据记录的短时间覆盖限制了其在长期研究中的应用。我们使用机器学习在具有高时空分辨率(0.05°,8 天)的晴朗天空条件下重建 2001-2020 年期间的 TROPOMI SIF (RTSIF)。我们的机器学习模型在训练和测试数据集上表现良好(R^2 = 0.907, regression slope = 1.001)。RTSIF 数据集针对 TROPOMI SIF 和基于塔的 SIF 进行了验证,并与其他卫星衍生的 SIF(GOME-2 SIF 和 OCO-2 SIF)进行了比较。 RTSIF 与总初级生产 (GPP) 的比较说明了 RTSIF 在估算碳通量方面的潜力。这个数据集将在评估长期陆地生态系统光合作用和全球碳水通量方面有重要价值。
陈星安, 黄跃飞, 聂冲, 张硕, 王光谦, 陈世鎏, 陈志超
水库是重要的水利工程设施,在农业灌溉和市政用水的储存和输送中发挥着关键作用,但这一作用会受到水库蒸发的影响。但由于全球长期且连续的水库地理信息的可获取性受限,因而估算全球水库蒸发损失仍有一定困难。目前,两个最新的水库数据集,即全球水库表面数据集(Global Reservoir Surface Area Dataset)和全球水库和大坝数据库(Global Reservoir and Dam Database),为解决这一困难提供了机会。我们使用这两个数据集估算了1985年至2016年全球7242个大型水库的月水库蒸发量。其中,蒸发率采用三套气象产品数据分别进行计算( (1) TerraClimate; (2) ERA5; (3) Princeton Global Forcings),水面面积采用全球水库表面数据集(Global Reservoir Surface Area Dataset)。
田巍, 刘小莽, 王恺文, 白鹏, 刘昌明
地表长波下行辐射(LWDR)作为地球能量平衡系统的关键分量,对生态和气候变化研究具有重要意义。随着遥感估算精度的不断提高和再分析资料时空分辨率与精度的提升,遥感和再分析数据融合将是进一步提高地表辐射等关键参量可信度和时空连续性的新途径。考虑到当前多源LWDR数据在时空分辨率和局部区域精度的差异,研究结合全球范围内的站点实测数据,将遥感观测数据(CERES)与再分析数据ERA5、GLDAS进行时空融合,研制了2000-2020年、覆盖全球、时空分辨率为1h/0.25°的高精度地表长波下行辐射数据集。新研制的LWDR数据集,与站点实测数据在陆地表面验证的相关系数 (R)、平均偏差误差 (BIAS) 和均方根误差 (RMSE) 分别为 0.97、-0.95 Wm-2 和 22.38 Wm-2 ;在海洋表面分别为 0.99、-0.88 Wm-2 和 10.96 Wm-2,特别指出的是,相比于已有数据,新数据集在中低纬度和复杂地形区表现出更好的精度和稳定性。
王天星, 王世遥
本数据集提供了基于遥感估算凋萎系数优化后的全球土壤质地数据,空间分辨率为0.25度。数据集采用了SCE-UA的优化方法,以基于SMAP遥感土壤水分估算的凋萎系数为优化目标,对两套常用的土壤质地数据集GSDE(Shangguan et al. 2014)和HWSD(Fischer et al., 2008)进行了优化。与站点观测的结果表明(北美地区44个站点),在陆面模式中使用优化后土壤质地数据集的土壤水分和蒸散比模拟准确度有较为明显的提升。
何晴, 卢麾, 周建宏, 阳坤, 施建成
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
姚盼盼, 卢麾, 赵天杰, 武胜利, 施建成
本土壤水分数据集是一个包含8年(2011-2018)的全球时空连续一致的日尺度地表土壤水分数据集,空间格网分辨率为25km,时间分辨率为每天,数据单位为cm3/cm3。数据集采用基于三重配置分析 (TCA: Triple Collocation Analysis)的土壤水分线性融合算法,对SMOS,ASCAT,FY3B,CCI,SMAP五种土壤水分产品分两步进行了融合:第一步,融合2011~2018年SMOS,FY3B和ASCAT土壤水分数据产品;第二步,对第一步融合的2015~2018年间的结果与相应年份的CCI以及SMAP数据产品进行再融合,最终获得2011~2018年间融合的土壤水分产品。最终融合的土壤水分数据在全球空间覆盖比达80%以上。此外,利用全球7个地面观测网络的站点实测土壤水分数据对上述融合的土壤水分产品进行了评价分析,最小RMSE (Root Mean Square Error) 为0.036 cm3/cm3。
贾立, 谢秋霞, 胡光成
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
本数据集为全球高精度高程控制点数据集,包含各个高程控制点地理定位,高程,采集时间等信息。 从卫星激光测高数据中提取的激光足印高程的精度受到许多因素的影响,如大气、有效载荷仪器噪声、激光足迹中的地形起伏等,导致精度不确定。该数据集通过评估标签和测距误差模型所构建的筛选准则对ICESat卫星从2003年到2009年的测高观测数据进行筛选提取,以期地形测图或依赖良好高程信息的其他科学领域提供高精度的全球高程控制点。经验证,平地(坡度<2°)、丘陵(2°≤坡度<6°)、山地(6°≤坡度<25°)区域的高程精度分别满足0.5m、1.5m、3m的精度要求。
谢欢, 李彬彬, 童小华, 唐鸿, 刘世杰, 金雁敏, 王超, 叶真, 陈鹏, 许雄, 柳思聪, 冯永玖
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
SSTG数据集是2002-2019年的全球海面温度数据,以摄氏度为单位,时间分辨率为月,空间分辨率为0.041°。 数据集是由2种红外辐射计(MODIS,AVHRR)及3种被动微波辐射计(AMSR-E,AMSR2,Windsat)得到的逐日海面温度卫星反演数据和逐日海面温度观测数据相结合,通过一个温度深度和观测时间校正模型校正后产生的。精度评价表明,重建后的数据集有明显改进,可以用于海洋中尺度现象分析。
毛克彪
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件