1) 数据内容:中亚大湖区数据库的2020年度更新数据库文件,包含2020年中亚大湖区生态站点中辐射总量的观测数据。 2) 数据来源及加工方法:数据来源于6个生态站点(站点号:1130、1131、1132、1133、1134、1137)的站点观测数据未经加工处理。 3) 数据质量描述:本数据为站点数据,时间分辨率为1分钟。数据质量控制过程包括2个步骤(1)内部一致性检查;(2)时间一致性检查。 4) 数据应用成果及前景:本数据为基本观测数据,为中亚大湖区数据库的重要年度补充,可为后续的气象、生态、水文、环境等研究领域提供数据支持、为项目研究的开展提供支撑。
刘铁
1) 数据内容:中亚大湖区数据库文件,包含2020-2021年中亚大湖区基础生态站点中总辐射要素的观测数据。 2) 数据来源及加工方法:数据来源于8个生态站点(站点号:1130、1131、1132、1133、1134、1135、1137、1138)的站点观测数据未经加工处理。 3) 数据质量描述:本数据为站点数据,时间分辨率为每1分钟。数据质量控制过程包括2个步骤(2)内部一致性检查;(2)时间一致性检查。 4) 数据应用成果及前景:本数据为基本观测数据,为中亚大湖区数据库的重要组成部分,可为后续的气象、生态、水文、环境等研究领域提供数据支持、为项目研究的开展提供支撑。
刘铁
本数据为青藏高原CHNAB005号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。 较去年不同的是,今年科考数据最多的网格发生了变化,可能有受到疫情或者环境的影响。
邓涛
中亚是一个高度农业化的地区,其农业资源有限且非常脆弱。为了评估未来气候变化对中亚农业的潜在影响,我们基于3个全球气候模式的9千米动力降尺度结果生产了一个中亚农业气候指数(agroclimatic indicators)高分辨率预估数据集。这些农业气候指数是生长季长度(growing season length, GSL, days),有效积温(biologically effective degree days, BEDD, ℃),霜冻天数(frost days, FD, days),夏日天数(summer days, SU, days),热浪天数(warm spell duration index, WSDI, days)和热夜天数(tropical nights, TR, days)。时段是1986-2005和2031-2050,空间分辨率为0.1°。由于这些指数(除了WSDI)都是基于温度的绝对阈值定义的,对区域模拟结果的系统偏差非常敏感,我们首先用分位数映射法(quantile mapping, QM)订正了模拟的气温,然后基于订正后的气温计算指数。评估结果显示:QM方法大幅减小了指数的偏差。预估结果显示:GSL,SU,WSDI和TR在整个中亚将显著增大,而FD将显著减小;BEDD的变化具有明显的空间差异性,在中亚北部和山区是增大的,在平原的中部和南部是减小的。这个高分辨率的数据集可被用于评估未来气候变化对中亚农业的风险影响。
邱源
本数据为基于WRF模式4.1.2版本和WRFDA同化系统4.1.2版本建立的中亚区域再分析资料,变量包含气温、气压、风速、降水、辐射。再分析的建立使用了循环同化的方式,每6小时使用3DVAR同化一次,同化的资料包括常规大气观测和卫星辐射资料。其中常规资料主要来源为GTS,来源包括人工站、自动站、探空和飞机报,观测要素包括气温、气压、风速和湿度。卫星观测包括反演数据和辐射数据,反演数据主要为极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到54km水平分辨率;辐射数据包含了MSU、AMSU和MHS等微波辐射和HIRS红外辐射数据。模拟采用双层嵌套的方式,水平分辨率分别为27公里和9公里,垂直方向共38层,模式层顶为10hPa。模式的侧边界条件由ERA-Interim再分析逐6小时的分析场提供,模式使用的物理方案为Thompson微物理方案,CAM辐射方案,MYJ边界层方案、Grell对流方案和Noah陆面模式。本资料覆盖区域包括中亚地区的哈萨克斯坦、塔吉克斯坦、吉尔吉斯斯坦、土库曼斯坦和乌兹别克斯坦五个国家以及里海、咸海、巴尔喀什湖、伊萨克湖等中亚地区的湖泊,可用于该区域的气候、生态、水文等方面的研究。以中亚地区台站观测的降水为参照,本数据的模拟效果和融合降水产品MSWEP相似,优于ERA5和ERA-Interim。
姚遥
基于台站历史逐日最高温数据以及再分析资料数据集,发展了一个基于一阶自回归和多元线性回归模型的逐日最高温统计降尺度模型,并由全球气候模型(CNRM-CM6-1)的 IPCC CMIP6 情景数据驱动该统计降尺度模型,预估中亚65个台站2015-2100年5种热浪指数(热浪事件数 (HWM),热浪频数(HWF), 热浪强度(HWM), 热浪最大持续时间(HWD),热浪振幅(HWA))的未来变化情景。最终获得2015-2100年四种排放情景下(SSP126,SSP245,SSP370,SSP585),中亚65个台站热浪变化情景数据集。
范丽军
中亚西亚野外气象站观测数据集(2019-2020)包括哈萨克斯坦(5个站),吉尔吉斯斯坦(1个站),塔吉克斯坦(3个站),乌兹别克斯坦(1个站),伊朗(2个站)共12个野外气象观测站的气象月数据,涉及21个观测指标:月平均气温(TA)、月平均气压(PA)、月平均相对湿度(RH)、月总降雨量(Pr)、月平均风速(WS)、月平均风向(WD)、0cm月平均土壤温度(TS1)、5cm月平均土壤温度(TS2)、10cm月平均土壤温度(TS3)、15cm月平均土壤温度(TS4)、20cm月平均土壤温度(TS5)、40cm月平均土壤温度(TS6)、60cm月平均土壤温度(TS7)、100cm月平均土壤温度(TS8)、月总太阳总辐射(SR)、月总反射辐射(GR)、月总紫外辐射(UVR)、月总净辐射(NR)、月总光合有效辐射(PAR)、月总土壤热通量(HF)、月总日照时长(SD)。 12个野外站涵盖农田、森林、草地、沙漠、荒漠、湿地、高原、山地等不同生态系统类型,资料时间长度从2019年10月开始,至2020年12月。本数据集由地面气象观测站收集到的气象原始数据经筛查和审核后,进行格式转换后获得,数据质量良好。中亚地区气候类型多样,生态环境脆弱,气象灾害频繁,本数据集的建立对于开展长期的中亚生态环境监测、防灾减灾、中亚地区气候变化与生态环境等领域的研究提供了数据支撑,目前已经在中亚生态环境监测研究中获得了应用。
李耀明
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
该数据集包含中亚地区1982-2015年逐次干旱事件的开始时间(年、月)、发生位置(经度、纬度)、持续时间(月)、干旱强度,以及植被响应干旱的脆弱性数据,空间分辨率为1/12°。其中,干旱事件通过12月尺度的标准化降水蒸散指数(SPEI12)<-1.0识别。干旱特征及植被脆弱性的具体算法详见引文。该数据集已在中亚植被响应干旱脆弱性等研究上得到应用,并在干旱事件时空特征、干旱-植被影响机理、干旱风险评估等研究领域具有应用前景。
邓浩宇
在使用三维变分方法进行资料同化时,需要利用误差协方差来确定背景场和观测各自的贡献。其中,背景场误差协方差不仅取决于所用的大气预报模式(如分辨率、参数化方案等),还取决于开展模拟的区域。本数据基于天气预报与研究(WRF)模式,通过对中亚大湖区(27公里水平分辨率)进行2017年一整年的模拟,使用NMC方法估计得到。其中包含的变量为流函数、速度势函数、温度、相对湿度和地表气压。本数据可应用于基于WRF模式开展的中亚大湖区资料同化研究与应用。
姚遥
1)数据内容:包含中亚地区,区域范围:30°N~60°N,40°E~90°E; 2)数据来源:对CMIP数据集进行加工,采用双线性插值方法将不同分辨率模式数据插值到0.5°× 0.5°,CRU观测数据1901年——2014年; 3)数据质量:时间长度较长,数据质量良好,缺测值统一用999标识; 3)数据应用成果集前景:数据已用于进行对中亚地区温度模拟能力评估,通过计算并分析中亚地区的温区的域平均、相对误差、均方根误差、泰勒图、EOF分解、季节变化等评估气候系统模式模拟中亚地区历史气候变化的能力。 4) 数据可靠性:通过对比分析观测和模拟资料的年变化,数据结果均呈显著的增温趋势,通过对数据结果进行相关性检验,均通过99%信度检验。同时,CMIP计划数据和CRU数据也是较为常用的数据集,在很多进行气候变化的研究中,也经常采用这样的数据。
马金玉
气象数据是一组反映天气的数据,气象数据可分为气候资料和天气资料。本数据集主要包含了气象数据中的降雨数据以及气温数据(数据集中pre代表降雨、T2代表气温)。该数据集来自英国东安格利亚大学(University of East Anglia)提供的CRU(Climate Research Unit)全球格网数据(http://www.cgiar-csi.org/)。CRU数据集通过对中亚365个地区的观测站点资料插值得到,在中亚地区有较高的准确度。本数据集利用CRU通过Arcgis批量裁剪的方式得到中亚五国的降雨以及气温数据。数据格式:GeoTIFF;空间分辨率:0.5°;时间尺度:月尺度。该气象数据应用十分广泛,可与不同领域资源相融合,在交通运输、新能源、农业、移动互联网软件开发和服务、公共管理及基于大数据技术的智慧城市、智慧交通、智慧粮食等领域的开发建设中起到重要作用。
CRU
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
中亚野外气象站观测数据集包括中亚10个野外气象站气温、降水、风向风速、相对湿度、气压、辐射、土壤热通量、日照时间和土壤温度等实地观测数据。10个野外站涵盖农田、森林、草地、沙漠、荒漠、湿地、高原、山地等不同生态系统类型。本数据集由地面气象观测站收集到的气象原始数据经筛查和审核后,进行格式转换后获得。数据质量良好。中亚地区气候类型多样,生态环境脆弱,气象灾害频繁,本数据集的建立对于开展长期的中亚生态环境监测、防灾减灾、中亚地区气候变化与生态环境等领域的研究提供了数据支撑,目前已经在中亚生态环境监测研究中获得了应用。
李耀明
中亚五国1980-2015年农业水资源供需和开发利用数据集,来源全球陆面数据同化系统,分别包括基于Noah、Mosaic和VIC模型输出的降水、蒸发和径流数据。该数据集时间和空间分辨率高,具有较好的数据精度,在全球尺度和区域尺度研究中应用广泛。Noah、Mosaic和VIC模型的降水、蒸发和径流模拟结果在空间分布上的表现较为一致。可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
张永勇
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件