本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
积雪是冰冻圈的重要组成要素,是全球变化与地球系统科学研究中不可或缺的变量。积雪的分布范围和物候信息是衡量积雪变化特征的重要指标,也是寒区水文模型中融雪径流模拟的重要参数。亚洲高山区是许多国际性河流的发源地,也是全球气候变化研究的热点区;该地区冰雪变化将引发的水资源减少、极端天气事件增多、灾害频发等生态和环境问题,已受到各国的广泛关注。因此,准确获取长时序的亚洲高山区积雪分布与积雪物候数据对气候变化研究、水资源管理以及灾害预警与防治至关重要。 亚洲高山区逐日无云MODIS归一化积雪指数(NDSI)产品(2000-2021,500 m)是在MODIS逐日积雪产品(包括Terra上午星数据产品MOD10A1和Aqua下午星数据产品MYD10A1,C6版本)的基础上,通过同一天上下午星数据融合以及三次样条函数插值去云算法处理后得到;其中,在2000-2002年只有上午星数据产品MOD10A1时,则直接采用三次样条函数插值去云算法处理。水文年2002-2020的积雪物候数据集是基于逐水文年内的无云MODIS NDSI产品制备而成,包括积雪开始日期(SOD)、积雪结束日期(SED)和积雪持续日数(SDD)3个参数。本数据集具有可靠的精度。
唐志光, 邓刚
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
积雪面积比例(fractional snow cover, FSC)是单位像元内积雪覆盖面积(Snow Cover Area SCA)与单位像元面积的比值。本数据集的制作方法为BV-BLRM积雪面积比例线性回归经验模型;采用的源数据为MOD09GA 500米全球逐日地表反射率产品,以及MOD09A1 500m的8天合成全球地表反射率产品;制作平台使用的是Google Earth Engine;数据范围为全球范围,数据制备时间为2000至2021年,空间分辨率为500米,时间分辨率为逐年。该套数据可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛
中国2000-2020年去云积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为8天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。
肖鹏峰, 胡瑞, 张正, 秦棽
该数据集包含2016年11月至2020年8月在青藏高原采集的15条冰川共269个冰雪样品微生物扩增子测序数据,包括24K冰川(24K)、冬克玛底冰川(DKMD)、敦德冰川(DD)、杰玛央宗冰川(JMYZ)、廓琼岗日冰川(KQGR)、来古冰川(LG)、帕隆4号冰川(PL4)、羌塘1号冰川(QT)、枪勇冰川(QY)、曲玛冰川(QM)、唐古拉龙匣宰陇巴冰川(TGL)、夏岗江冰川(XGJ)、雅拉冰川(YA)、泽普沟冰川(ZPG)、珠峰东绒布冰川(ZF)。采样区域经纬度范围为28.020°N到38.100°N和86.28°E到95.651°E。 通过聚合酶链式反应(PCR),采用515F/907R(或515F/806R)引物对16s rRNA基因的V4-V5区(或V4区)片段进行扩增,并用Illumina Hiseq2500测序平台测序获得原始数据。所选引物序列分别为:“515F_GTGCCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT”“515F_GTGCCAGCMGCCGCGG, 806R_GGACTACHVGGGTWTCTAAT”。上传的数据包括:样品编号,样品描述,采样时间,经纬度坐标,样品类型,测序目标,测序片段,测序引物,测序平台,数据格式等基础信息,测序数据以序列文件数据格式正向 *.1.fq.gz和反向 *.2.fq.gz压缩文件储存。
刘勇勤
以青藏高原为核心的亚洲水塔区域是地球上除南北极之外,积雪分布最为广泛的地区。亚洲水塔区域地形异质性极大,积雪在该地区呈现雪层薄且大面积斑块状分布,导致该地区积雪具有高时变特征,因此急切需要日尺度的积雪覆盖度动态监测数据。本数据集基于MODIS全球地表反射率产品MO/YD09GA产品,利用基于端元自动提取的多端元光谱混合分析算法(Multiple Endmember Spectral Mixture Analysis- Automatic-selected Endmembers,MESMA-AGE)和基于多步时空插值的去云算法,构建了2000-2020年亚洲水塔区域MODIS逐日无云积雪覆盖度数据集。以高空间分辨率Landsat影像为地面‘真值’,平均均方根误差为0.14,优于国际上常用的MODSCAG和MOD10A1两套积雪覆盖度数据集。本数据集时间序列为2000年2月26日至2022年3月31日,可为山区水文模型、 陆地表面模式、数值天气预报等提供定量的积雪空间分布信息。
蒋玲梅, 潘方博, 王功雪, 潘金梅, 施建成, 张成
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
邬光剑
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
本数据集来源于论文:Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15, 4261–4279. 在这篇文章中,分别基于地面站点数据、Landsat数据和MODIS积雪产品,首次在长时间尺度上(1982-2018)对AVHRR GAC 积雪产品在兴都库什喜马拉雅山脉的表现进行全面的评估,包括该产品的精度/准确性在长时间序列上的一致性,以及该产品与Landsat和MODIS积雪数据在空间分布上的一致性,并揭示了影响AVHRR GAC积雪产品精度的主要因素。
吴小丹
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
2015年至2020年,青藏高原的15号冰川 (NO.15)、24K冰川(24K)、阿扎冰川(AZ)、措普沟冰川(CPG)、德木拉冰川(DML)、东绒布冰川(DRB)、冬克玛底冰川(DKMD)、敦德冰川(DD)、古里雅冰川(GLY)、红旗拉普冰川(HQLP)、康西瓦河冰川(KXW)、抗物热冰川(KWR)、廓琼岗日冰川(KQGR)、朗阿定日冰川(LADR)、蒙达岗日冰川(MDGR)、木嘎岗穹冰川(MGGQ)、木吉冰川(MJ)、慕士塔格冰川(MSTG)、纳木那尼冰川(NMNN)、尼玛冰川(NM)、怒江源头(NJYT)、帕隆4号冰川(PL4)、羌塘1号冰川(QT)、枪勇冰川(QY)、曲玛冰川(QM)、色齐拉冰川(SQL)、唐古拉龙匣宰陇巴冰川(LXZ)、夏岗江冰川(XGJ)、雅拉冰川(YL)、泽普沟冰川(ZPG)、朱西沟冰川(ZXG)共31条冰川冰雪的理化性质特征,包括DOC、TN及主要阴阳离子浓度(钙离子、镁离子、钾离子、钠离子,铵根离子、氯离子、亚硝酸根离子、硝酸根离子、硫酸根离子浓度)。样品通过0.45微米分子膜过滤后,使用岛津TOC-L仪器检测,离子浓度则通过离子色谱仪检测。指标单位为mg/L,“n.a.”表示低于仪器检测限,“\”表示缺失值。表格中sheet1为“青藏高原冰川雪冰理化性质(2015-2020)”,sheet2为“冰川基本信息”。
刘勇勤
记录冰川、径流、土壤及空气微生物样品的原始采集过程。1)冰雪微生物样品采集:采集过程中佩戴洁净手套,将冰雪采集至洁净自封袋中。2)冰尘微生物样品采集:通过软管插入冰尘穴底部,使用注射器将底泥、融水吸入到采样瓶中,低温保存带回实验室,底泥和冰尘穴上部融水均用来提取环境DNA。3)径流包括冰上径流和冰川前缘径流,直接采集径流融水至采样瓶或者采水袋中。4)冰川前缘土壤的采集:使用铲子采集土壤样品,通过2mm土筛后将土壤装至洁净的whirl-pak采样袋中,然后低温保存,用于后续土壤DNA的提取。5)空气膜样品采集:将设计好的采样装置置于采样点,装置下部为电池(可持续工作48h),上部包含两张滤膜收集空气微生物,用于DNA的提取。6)冰川径流、融水中理化性质的实时监测,使用YSI多参数水质仪,直接放入待测样品中,获取温度、DO、叶绿素浓度等。
刘勇勤
在地球大数据科学工程专项时空三极环境项目第一课题“三极大数据共享与集成” (XDA19070100)资助下,中国科学院西北生态环境资源研究院车涛课题组利用机器学习方法结合多源雪深产品数据、环境因子变量及地面观测雪深数据等制备了北半球长时间序列逐日雪深数据集。 首先将人工神经网络、支持向量机和随机森林方法在积雪深度融合的适用性进行对比研究,发现随机森林方法在雪深数据融合上表现出较强优势。其次,利用随机森林方法,结合AMSR-E,AMSR2,NHSD和GlobSnow等遥感雪深产品及ERA-Interim和MERRA2等再分析资料格网雪深产品和环境因子变量等作为模型的输入自变量,用中国气象台站数据(945)、俄罗斯气象台站(620)、俄罗斯积雪调查数据(514)和全球历史气象网络逐日数据(41261)等43340个地面观测站点的雪深数据作为参考真值对模型训练与验证,在专项“地球大数据科学工程”提供的云平台上制备1980~2019年积雪水文年(上一年9月1日至本年度5月31日)的逐日格网雪深数据集。由于1980~1987年微波亮温数据为隔日数据,所以这段时间的数据会出现少量条带缺失现象。利用全球积雪模型对比计划及独立的地面观测数据进行验证,融合数据集的质量在整体上有所提升。利用地面观测数据及融合前的雪深产品对比来看,融合数据的决定系数(R2)从6种融合前产品中最高的0.23(GlobSnow雪深产品)提升至0.81,而相应的均方根误差(RMSE)和平均绝对误差(MAE)也减小至7.7 cm 和2.7 cm。
车涛, 胡艳兴, 戴礼云, 肖林
中国逐日雪深模拟预估数据集是采用人工神经网络模型,以NEX-GDPP模式数据集作为依托,预估的中国未来逐日雪深数据,其中雪深模拟的人工神经网络模型是以当天的最高温度、最低温度、降水数据和当天雪深数据作为模型的输入层,次日的雪深数据作为模型目标层对模型搭建,然后运用国家气象站数据对搭建的雪深模拟模型进行训练和验证进行训练,模型验证结果显示:模型迭代时空模拟能力较好;累积雪盖持续时间、累积积雪深度的模拟值和验证值的空间相关性为0.97和0.87,累积雪深的时间和空间相关性分别为0.92和0.91。在模型最优基础上,用此模型迭代模拟未来中国区域内逐日雪深数据。该数据集可以为中国未来雪灾风险评估、积雪范围变化研究以及气候变化研究提供数据支持。该数据基本信息如下:历史基准时段(1986~2005年)、未来模拟(2016~2065年)两个时间段,以及RCP4.5和RCP8.5两种情景,20个气候模式。其空间分辨率为0.25°*0.25°。该数据的投影方式为EASE-Gr,数据保存格式为nc格式。 下面是nc中数据文件信息 time:时长(单位:天)历史基准时段(起始时间:1986年1月1日,终止时期:2005年12月31日) 未来模拟(起始时间:2016年1月1日,终止时期:2065年12月31日) longitude = 320矩阵共320列 latitude = 160矩阵共160行 depth:雪深(cm) X Dimension: Xmin = 60.125; //矩阵x方向左下角网格的角落点坐标 Y Dimension: Ymin = 15.125; //矩阵y方向轴左下角网格的角落点坐标
陈虹举, 杨建平, 丁永建
雪水当量(Snow water equivalent,SWE)是地表水文模型和气候模型的重要参数。本数据基于机器学习的岭回归算法融合了多种现有的雪水当量数据产品,形成了一套时间序列连续且精度较高的雪水当量数据产品。数据的空间范围为泛北极地区(北纬45°至北纬90°),数据时间序列为1979-2019年。该数据集有望为水文模型和气候模型提供更为精确的雪水当量数据,为冰冻圈变化及全球变化提供数据支撑。
李弘毅, 邵东航, 李浩杰, 王卫国, 马媛, 雷华锦
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
邬光剑
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
结合MODIS积雪产品Terra/Aqua(500 m)与IMS(4 km),发展了青藏高原每日无云高分辨率积雪产品 (TAI, 500 m)。其相对于原始的MODIS Terra(云覆盖46.6%)和Aqua(55.1%)、及MODIS Terra-Aqua结合(37.3%),将云遮蔽全部去除。同时,提高了积雪成图,新生成的TAI产品的积雪面积为19.1%,相对于原始的MODIS Terra/Aqua及MODIS Terra-Aqua结合(积雪面积4.7%~8.1%),显示了大大的提高。与青藏高原105个站点雪深数据验证表明,TAI产品的总精度为94%,相对于MODIS Terra(55%)、MODIS Aqua(50%)、及MODIS Terra-Aqua结合(64%),都显示了较大的提高,特别是雪深大于4 cm时效果较好。
张国庆
本数据集来源于书籍:《横断山区冰川》,该书籍的归属于青藏高原横断山区科学考察丛书,主编为李吉均,副主编为苏珍,指导单位为中国科学院地理研究所。该书所指考察队为中国科学院青藏高原综合考察队,出版社为科学出版社。由于横断山一些地区,降水充沛,积雪深厚,雪崩、风吹雪和异常降雪成为一种常见的自然灾害,给当地居民的工作与生活造成了极大的伤害,本书就此对于横断山地区的雪害进行了详细的记录。该数据包含了2张工作簿和2张图片,分别是雪害状况及危害程度统计表、雪崩的区域特征、川西滇北藏东南地形切割程度图、横断山雪崩危害范围图。
李吉均
亚洲高山区是地球上除南极和北极地区之外的第三大冰冻圈,分布着大量冰川积雪,不仅对全球水循环而且对亚洲中部干旱区的水资源及生态环境均有举足轻重的影响。在冰川学中,雪线作为消融期末积雪存在的下限,其高度变化信息是冰雪水资源变化的直观反映,也常用于指示冰川物质平衡,直接反映着冰川的进退。本数据集以2001—2019年逐日MODIS积雪产品为主要数据源,首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;然后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取,最后得到2001-2019年亚洲高山区30km格网雪线高度数据集。本数据集可为亚洲高山区冰冻圈及气候变化等相关研究提供数据支持。
唐志光, 邓刚, 王晓茹
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
高亚洲地区对气候变化非常敏感,是全球变化研究的热点区域。气温和降水的变化会在冰雪冻融的时间上反映出来。星载微波遥感能提供时空连续的冰雪表面状态监测能力,当冰雪中很小一部分开始融化造成微量液态水,也会反映在主动和被动微波遥感信号中。在微波波段,冰与液态水的介电常数差异巨大,因此为微波遥感监测冰雪融化提供了基础理论。在被动微波情况下,当冰雪开始融化而出现液态水时,其吸收和发射率迅速增加,因此其发射率和亮度温度、后向散射系数也会迅速改变。本数据集为利用1979年至2018年长时间序列卫星微波辐射计和散射计观测反演的高亚洲地区冰雪融化的初始时间。被动微波遥感数据为搭载在卫星上的SMMR(1979~1987年),以及搭载于DMSP上的SSM/I-SSMIS辐射计(1988年至今)。主动微波遥感数据为QuikSCAT卫星散射计(2000~2009年)。
熊川, 施建成, 姚汝桢, 雷永荟, 潘金梅
本数据包括西藏纳木错湖水不同深度处的日平均水温数据,是实地监测获取的湖水温度变化情况;该数据利用水质多参数仪及温度探头放置于水中而连续获取,温度记录的分辨率是10分钟和2小时,并基于原始测量数据计算了日平均水温;所用仪器和方法均非常成熟,数据处理过程进行了严格的质量控制,确保数据真实可靠;该数据已用于纳木错湖水热力学分层研究、湖气热量平衡研究等物理湖泊学方面的基础研究,并用来校正基于遥感数据的湖水温度数据及不同的湖泊模型研究。可用于物理湖泊学、水文学、湖气相互作用、遥感数据同化验证及湖泊模型研究。
王君波
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
时空连续的积雪覆盖面积对陆表能量水分交换、山区水文、陆面模式、数值天气预报以及气候变化研究具有重要意义,而云的大量存在,造成光学遥感积雪覆盖面积中严重的数据空缺。本数据集采用Terra和Aqua双星MODIS观测,以及FY-2E和FY-2F VISSR双星观测,获取受云影响较小的积雪覆盖 度(亚像元积雪覆盖),并根据时序信息补充剩余云像元的积雪覆盖度,最终得到无云积雪覆盖度。本数据集包括青藏高原0.005度(约500 m)和中国地区的0.05度(约5 km)空间分辨率逐日积雪覆盖度。
蒋玲梅
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
积雪面积比例(fractional snow cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area SCA)与像元空间范围的比值。本数据集涵盖区域为北极地区(北纬35°至北纬90°),使用Google Earth Engine平台,采用的初始数据为MOD09GA 分辨率为1000m的全球地表反射率产品,数据制备时间为2000年2月24日至2019年11月18日。方法为:在训练样本区域,使用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集,将该数据集作为训练样本区域FSC真值,从而建立训练样本区域FSC与基于MODIS地表反射率产品的雪被指数NDSI之间的线性回归模型。使用该模型,将MODIS全球地表反射率产品作为输入,制备北极地区积雪面积比例时序数据。该数据集可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛, 李弘毅
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
该数据集提供1978年10月24日到2012年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km。用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1978-1987年),SSM/I(1987-2008年)和AMSR-E(2002-2012)逐日被动微波亮温数据。由于三个传感器搭载在不同的平台上,所以得到的数据存在一定的系统不一致性。通过对不同传感器的亮温进行交叉定标提高亮温数据在时间上的一致性。然后利用车涛博士在Chang算法基础上针对中国地区进行修正的算法进行雪深反演。具体反演方法参考“数据说明文档”。 该数据集包含EASE-Grid和经纬度两种投影方式,分别放入两个不同的文件夹中:ease-grid_rar(数据仅到2010年)和lon-lat_rar。两种投影的数据都逐年打包,文件命名方式为:传感器名称简写+年份,如ease-grid_rar目录下的SR1985表示用SMMR亮温数据反演的1985年的雪深;SI1990表示用SSM/I亮温数据反演的1990年的雪深;AE2005表示用AMSR-E亮温数据反演的2005年的雪深,这些数据的投影方式都是EASE-Grid。lon-lat_rar目录下,上面的数据集名称解释相同,只是其投影方式为经纬度投影。详细数据说明请参考数据文档。
车涛, 李新, 戴礼云
全球雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2018年,时间分辨率为逐日,覆盖范围为全球,空间分辨率为25,067.53 m。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明全球雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和1383*586的雪深矩阵组成,每个雪深代表一个25,067.53m*25,067.53m的格网。该数据的投影方式为EASE-Grid,下面是每个文件的文件头,将其加到每个文件的前面可以将数据在arcgis中显示。 ncols 1383 // 数据矩阵共1383列 nrows 586 // 数据矩阵共586 xllcorner -17334193.54 //矩阵x方向左下角网格的角落点坐标 yllcorner -7344787.75 //矩阵y方向轴左下角网格的角落点坐标 cellsize 25,067.53 //每个网格的大小 NODATA_value -1 //缺省值
车涛, 李新, 戴礼云
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
雪冰中可溶有机碳(DOC)能够有效的吸收紫外和近紫外波段的太阳辐射,也是导致雪冰消融增强的重要因素之一。通过连续阿勒泰地区2016年11月至2017年4月的积雪样品,利用仪器进行实验分析测试获得阿勒泰地区库威站积雪DOC、总氮TN以及黑碳BC的数据,时间分辨率为周,消融期为每日。 1. 单位: DOC和TN的单位μg g-1 (ppm), BC的单位ng g-1(ppb),MAC的单位是 m2 g-1
上官冬辉
青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)基于国家卫星气象中心的青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)和美国雪冰中心的25km近实时逐日全球冰密集度与积雪范围NISE产品数据集(1995-2019)合成得到,覆盖时间从1995年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻的地面是否为积雪所覆盖。输入数据源为NOAA或MetOp卫星AVHRR逐日积雪覆盖产品,TERRA卫星MODIS替代AVHRR对应观测通道生成的逐日积雪覆盖产品,以及DMSP卫星SSM/I或SSMIS逐日全球冰密集度和积雪范围NISE产品。数据集合成方法:以青藏高原光学仪器遥感1km积雪覆盖产品为基础,完全信任其积雪和晴空无雪信息,对有云覆盖、无法判识、缺少卫星观测等区域,在相对高空间分辨率海陆模板的辅助下,利用NISE的陆地有效判识结果进行替换。对于部分水陆边界,因NISE产品空间分辨率较低,合成结果有可能仍存在极少量的云覆盖或者无观测数据区域。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在91%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 曹广真
青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻晴空无云或透明薄云下的地面是否为积雪所覆盖。输入数据源为NOAA与MetOp卫星的AVHRR L1数据,以及从TERRA/MODIS对应于AVHRR通道的L1数据。产品处理方法为独立于云掩模产品的动态阈值决策树算法(DT),即算法同时判别云雪,且其云检测强调保留雪信息,特别是透明卷云下的雪。DT算法针对不同情况,考虑了多种判识手段,如水云上的冰云,森林和沙地的积雪,薄雪或融雪等;根据地表类型、DEM和季节设定动态阈值;采用多种质量控制手段,如在重度气溶胶或烟尘覆盖的低纬度森林中剔除伪雪,参考最大月雪线和最小雪面亮度温度剔除伪雪;优化不同种类型云雪和晴空无雪陆地的判识流程。DT算法在正常情况下能区分大部分云雪,但会低估10月份青藏高原的积雪。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在95%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 除多
青藏高原积雪面积长时间序列数据集来源于MODIS 005版本和IMS数据集的融合,采用插值去云算法进行去云处理后得到逐日积雪面积无云产品。投影为经纬度,空间分辨率0.005 度(约500m),时间从2003.1.1-2014.12.31长时间序列,每个文件为当日的积雪面积比例结果,数值为0-100(%),为ENVI标准文件,命名规则为:ims_mts_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 文件说明:200 积雪、100 湖冰、25 陆地、37 海洋
郝晓华
青藏高原逐日无云MODIS积雪面积比例数据集(2000-2015)是在MODIS逐日积雪产品—MOD10A1的基础上,采用一种基于三次样条函数插值的去云算法进行去云处理后得到。 该数据集采用UTM(横轴等角割圆柱)投影方式,空间分辨率500m,提供逐日的青藏高原地区积雪面积比例(Fractional Snow Cover-FSC)结果。数据集为逐日文件,从2000年2月24日到2015年12月31日。每个文件为当日的积雪面积比例结果,数值为0-100(%),为ENVI标准文件,命名规则为:YYYYddd_FSC_0.5km.img,其中YYYY代表年,ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 进行去云处理的原始MODIS积雪数据产品来源于由美国国家雪冰数据中心(NSIDC)处理的MOD10A1产品,这一数据集为hdf格式,采用sinusoidal投影。 青藏高原逐日无云MODIS积雪面积比例数据集(2000-2015)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为500m,经度范围为72.8°~106.3°E,纬度为25.0°~40.9°N。 投影信息:UTM(横轴等角割圆柱)投影。 数据格式:ENVI标准格式。文件命名规则:“YYYYddd”+“_FSC_0.5km”+“.img”,其中YYYY代表年,ddd代表儒略日(001-365/366),其中“.img”是为了方便在ARCMAP等软件打开察看而添加的文件后缀。例如2000055_FSC_0.5km.img代表2000年第55天的结果。其中该数据集的ENVI文件是由头文件和主体内容构成。头文件包括行数、列数、波段数、文件类型、数据类型、数据记录格式、和投影信息等;以2000055_FSC_0.5km.img 文件为例,其头文件信息如下: ENVI description = { ENVI File, Created [Sat Apr 27 18:40:03 2013]} samples = 5760 lines = 3300 bands = 1 header offset = 0 file type = ENVI Standard data type = 1 :代表byte型 interleave = bsq :数据记录格式为BSQ sensor type = Unknown byte order = 0 map info = {UTM, 1.500, 1.500, -711320.359, 4526650.881, 5.0000000000e+002, 5.0000000000e+002, 45, North, WGS-84, units=Meters} coordinate system string = {PROJCS["UTM_Zone_45N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",87.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Unknown,band names = {2000055}
唐志光, 王建
在众多反映气候环境变化的指标中,冰芯稳定同位素指标是冰芯记录研究中必不可少的参数,是恢复过去气候变化最可靠的手段和最有效的途径之一。冰芯积累量是冰川上降水量的直接记录,而且高分辨率冰芯记录保证了降水记录的连续性。因此,冰芯记录提供了一种恢复降水量变化的有效手段。从青藏高原钻取的冰芯同位素和积累量可用来重建温度和降水变化,是很好的气候环境记录。本数据集提供了青藏高原冰芯同位素和积累量数据,为研究青藏高原的气候变化提供数据支撑。
徐柏青
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的黑碳(Black carbon,BC)气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。在青藏高原通过钻取冰芯样品、采集表雪样品,测量其中的黑碳含量,恢复历史记录和空间分布,为对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
徐柏青
该数据集是利用Flow Tracker便携式水文流速流量仪观测获取的色林错流域甲岗雪山融水流量数据,可应用于冰川、寒区水文过程等学科领域。 数据获取时间为2016年9月15日,数据内容包含测量时间、位置、水深、流速及流量。 数据以excel文件存储。
张寅生
青藏高原冰芯-积雪黑碳含量数据集包括5个表:1 Xu et al. 2006 AG,2 Xu et al. 2009 PNAS_Conc,3 Xu et al. 2009 PNAS_flux,4 Xu et al. 2012 ERL,5 Wang et al. 2015 ACP。 数据采集地点包括煤矿冰川、冬克玛底、枪勇、抗物热、纳木那尼、慕士塔格、绒布、唐古拉山、宁金岗桑、左丘普、天山乌鲁木齐河源1号等冰川,采集地点经纬度,高程等信息在数据中均有标注。 数据主要指标为:地点、时间、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)、黑碳(black carbon,BC)含量和通量。 地点:经纬度 时间:年份或日期 OC:有机碳 EC:元素碳 BC:黑碳 Conc.:含量,单位:ng g-1 Flux:通量,单位:mg m-2a-1 数据来自课题: ①国家重点基础研究发展计划(973计划):全球变化敏感因子的时空特性与遥感模式化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:科技部 ②国家重点基础研究项目:青藏高原形成演化对全球变化的响应与适应对策;负责人:姚檀栋单位:中国科学院青藏高原研究所资助者:科技部 ③国家自然科学基金面上项目:青藏高原雪冰中高分辨率碳黑记录研究;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ④国家自然科学基金面上项目:青藏高原冰芯包裹气体中气候环境信息的提取;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑤国家自然科学基金杰出青年基金项目:青藏高原雪冰-大气化学与环境变化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑥国家自然科学基金青年基金项目:藏东南冰芯近百年来南亚人类活动气溶胶排放与燃烧得变化研究;负责人:王茉单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 观测方法:两步加热法、热/光学碳分析方法和单颗粒黑碳气溶胶光度计。
徐柏青
数据包括纳木错和慕士塔格大气气溶胶数据集:TSP及锂、钠等元素成分月均值;纳木错和慕士塔格大气降水化学数据集:可溶性钠、钾、镁、钙等离子月均值;纳木错流域扎当冰川雪冰化学成分数据集:不同月份采集的雪坑可溶性钠、钾、镁、钙等离子浓度。数据用于对纳木错和慕士塔格地区的大气气溶胶元素含量、降水化学以及冰川雪冰化学记录进行定位观测。 样品在中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室采用离子色谱分析仪ICS2500和ICS2000分别测定样品中可溶性阴阳离子浓度。 数据采集处理过程: 1.选择在青藏高原典型地区纳木错流域和慕士塔格峰地区架自动雨量筒采集降水样品。降水样品由SYC-2型降雨采样器采集,该采样器由采集器、感雨器和压盖驱动组成,样品采集器设有降雨采集桶和降尘采集桶,通过感雨器感知天气状况,当降雨开始时降雨采集桶打开,压盖压在降尘采集桶上,采集降雨样品时仪器自动记录降雨日期及降雨起止时间。降雨停止时,压盖自动翻转到降雨采集桶,完成一次降雨记录。降水结束后收集的样品置入20mL高密度聚乙烯洁净塑料瓶内并在-20℃的冰箱中冷藏。样品在运输、保存过程中处于冷冻状态,直至实验分析前从冰箱内取出在室温(20℃)下融化。降水样品采用中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室的离子色谱分析仪ICS2500和ICS2000分别测定降水中可溶性阴阳离子。 2.架设于纳木错站的大气气溶胶采样仪距离地面高度为4m,安装有一台真空泵,利用太阳能电池板和蓄电池联合供电,空气流量由自动流量计记录,瞬时流量约合为16.7L/min。空气流量按纳木错地区的气象参数转化为标准体积。采用直径为47mm、孔径为0.4μm的Teflon滤膜,样品间隔天数为7天,每个样品的采样总流量约为120-150m³。采样后每个样品单独放置于一次性滤膜盒中并于冰箱中低温保存。采样前后将滤膜放置在恒温(20±5℃)恒湿(40±2%)环境中48小时,用万分之一电子天平(AUW220D,Shimadu)称重,前后重量之差即为滤膜上气溶胶样品的重量。采集到的样品在中国科学院青藏高原研究所环境变化与地表过程重点实验室利用电感耦合等离子体质谱仪(ICP-MS)测定18种元素的质量浓度。在室内外的操作过程中都采取严格措施防止可能的污染。 3.采用预先清洗的塑料小铲子从雪坑的下部向上每隔5cm(有的雪坑是每隔10cm)采集一个样品。样品在室温下溶化后置入20mL高密度聚乙烯洁净塑料瓶内并置于-20℃的冰箱中冷藏。样品在运输、保存过程中处于冷冻状态,直至实验分析前从冰箱内取出在室温下融化。样品在中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室采用离子色谱分析仪ICS2500和ICS2000分别测定样品中可溶性阴阳离子浓度。人工采集冰川雪冰化学样品过程中均需穿戴洁净服、一次性口罩和塑料手套以防止产生污染。 数据集加工方法为原始数据经过质量控制后形成月均值连续序列。符合中国和世界降水、气溶胶、雪冰记录常规监测研究精度,满足与相关气候变化记录的对比研究。
康世昌
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件