青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
我们提供了中国范围内1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2020年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land时间序列数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。我们进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,我们提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
上官微, 李清亮, 石高松
该气象数据为中国科学院珠穆朗玛大气与环境综合观测研究站观测场内(86.56°E, 28.21°N,4276m)2019-2020年观测的气温、相对湿度、风速、降水量、气压、辐射、土壤温湿度等基本气象数据。降水量为日累计值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。 该数据可供从事气象、大气环境或生态等研究的学生和科研人员使用(注意:使用时必须在文章中标明数据来源于中国科学院珠穆朗玛大气与环境综合观测研究站,Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS/CAS))
席振华
1)本数据是依据最新的22个CMIP6耦合全球气候模式模拟结果计算的Aridity Index(干燥指数)数据;2)计算公式为P/PET(降水与潜在蒸散发的比值),PET的计算依据PM公式;3)包括SSP2-4.5与SSP5-8.5两种情境的中亚大湖区1900年1月到2100年12月的月数据,分辨率为1度*1度;4)该数据可用于分析未来中等以及高排放情境下中亚大湖区干湿格局分布以及演变过程的预估。该数据已进行3个月滑动处理。
华丽娟
本数据集为1948-2018 干旱指数AI年数据集,空间覆盖范围为60S-60N,180E-180W,空间分辨率为0.5°,时间分辨率为逐年。其基于Penman–Monteith model 计算潜在蒸散发(PET),其中用到的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据来自于GLDAS,气温数据来自CPC,降水数据也来自于CPC。GLDAS资料分为两段,第一段来自于GLDAS_NOAH10_M V2.0系列,覆盖时间段为1948-2015年;第二段来自于GLDAS_NOAH10_M V2.1,覆盖时间段为2000-至今,我们利用2000-2014年的重合数据段进行拼接,将这一时期两套数据的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据平均值相减,得到差值,将差值加到V2.1的数据集中,从而计算PET。
于海鹏
数据集包含西藏墨脱地区墨脱国家气候观象台(29°18’N,95°19’E,海拔1305.0米)的大气气溶胶PM10, PM2.5 和PM1数据以及环境空气温湿度。观测仪器为GRIMM-180 环境颗粒物分析仪,观测时间为2021年4月8日至2021年5月22日,数据时间分辨率为10秒,仪器工作过程中产生的异常数据已经剔除。在观测期间,由于受南亚季风影响,空气湿度较大,观测场地周边受人为活动干扰较少。本数据集为研究藏东南地区大气粉尘气溶胶物理特性、时空变化特征和来源解析提供了基础数据。资助项目:第二次青藏高原综合科学考察研究任务六专题二(2019QZKK0602)。
黄建平, 张镭, 田鹏飞, 史晋森
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
基于中国地面逐日气象要素数据集、全国地理基础数据、自然环境基础数据集,运用像元二分模型、密度分析、RclimDex、非平稳标准化降水蒸散指数(NSPEI)和双线性内插法等多种指标计算方法计算了横断山区的极端降水、极端气温、干旱强度、干旱频率等多种指标。该数据集包括横断山区的孕灾环境基础数据集、极端降水指标基础数据集、极端气温指标基础数据集、干旱强度和干旱频率基础数据集。该数据集可为区域内极端高温、降水和干旱风险评估提供基本的指标体系。我们得出横断山区内90%以上站点的极端气温暖指数显著上升,极端气温冷指数显著下降。南北气温差异显著,以青藏高原为界,北部气温日较差大,平均在13.83℃,南部气温日较差小,平均为11.38℃,南部平均的冰冻日数在1d左右。随着重现期的增加,持续干燥期(CDD)大于110d的区域逐渐由西部扩大到金沙江下游流域;在不同重现期下,持续降雨期(CWD)和年降水总量(PRCPTOT)的高值区集中在西部和南部的边缘;北部的日最大降水量(RX1day)在不同重现期下变化不显著,在60mm以下;最低气温极小值(TNn)和最高气温极大值(TXx)在空间分布上北低南高,40℃以上的高温普遍发生在南部的干旱河谷。
孙鹏
该数据集包含了2019年1月1日至2019年12月31日的青海湖流域自动气象站观测数据。共有两个站点,其中鸟岛站位于青海省海南州共和县,观测点经纬度36°58′N,99°52′E;瓦颜山站位于青海省海北州刚察县伊克乌兰乡观测点经纬度37°44′ N,100°05′ E。观测要素包括3层(1m、5m、10m)空气温度(℃)和相对湿度(%),大气压强(hpa)和光合有效辐射(W/m2)。数据基于CR1000 数据采集器收集,使用hmp155a测量空气温度与湿度,使用CS106测量大气压强, 使用LI200R测量光合辐射,每半小时进行一次数据记录。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
该数据包含波密2008年降水稳定同位素δ18O日均值,气温和降水量;降水样品由波密气象局采集,降水稳定同位素是在法国气候与环境科学实验室(Laboratoire des Sciences du Climat et de l’Environnement, France)测定,δ18O由MAT-252质谱仪测定。气温和降水量由波密气象局在降水事件发生时记录,气温为降水事件开始与结束的平均值。降水稳定同位素δ18O精度为0.05‰。 该数据研究已发表在JOURNAL OF CLIMATE,题为Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling。
高晶
该数据集为孟加拉,Satkhira、Barisal、Sylhet3个观测站点2017-2018年的日降水稳定同位素数据(δ18O,δD,d-excess),由Bangladesh Atomic Energy Commission (BAEC)采集,在中国科学院青藏高原研究所环境与地表过程重点实验室用Picarro L2130i 波长扫描光腔衰荡光谱仪测得。 三个观测点样品采集地点及时间: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
高晶
通过近30年的研究,人们对青藏高原,特别是喜马拉雅山以北地区降水稳定同位素(2H和18O)的气候控制作用有了充分的认识。然而,尼泊尔(喜马拉雅山以南)对降水稳定同位素的控制知识还远远不够。 本研究描述了2016年5月10日至2018年9月21日期间尼泊尔加德满都降水稳定同位素的季节内和年度变化,并分析了对降水稳定同位素的可能控制因素。所有样品均位于尼泊尔首都加德满都(27°42′N, 85°20′E),平均海拔约1400m。并结合了2001年1月1日至2018年9月21日的气象资料,给出了降水量(P)、温度(T)和相对湿度(RH)的值。
高晶
该数据为中国科学院藏东南高山环境综合观测研究站在嘎隆拉24k冰川的表碛区自动气象站数据(AWS,Campbell公司),地理坐标为北纬29.765°,东经95.712°,海拔3950 m。数据包括气温(℃)、相对湿度(%)、风速(m/s)、净辐射辐射(w/m2)、水汽压(Kpa)和气压(mbar)日算术平均数据,原始数据中2018年10月之前每30分钟记录一个平均值,之后为10分钟记录一个平均值。温湿度采用HMP155A温湿度探头测定,净辐射探头型号为NR01,大气压力传感器探头为PTB210,风速传感器为05103,这些探头离地面2 m高。数据质量方面:本数据经过了严格的质量控制,先剔除了原始的10分钟和30分钟的异常数据,然后计算了每小时的算术平均数,最后计算日值,在计算日值时,如果小时数据的个数不足24个,予以剔除,数据表中对应的日期的数据为空。视为空值为剔除异常值后的数据除由于冬春季积雪较厚,气温低,导致部分参数数据有缺失外,数据经过严格质量控制,可供研究气候、冰川和水文等的科研工作者使用。
罗伦
采自青藏高原的冰芯样品提供了冰雪同位素组成变化的高分辨率记录。该数据集包含了自1864-2006年各年的冰芯氧稳定同位素数据,冰芯是从青藏高原南部宁金岗桑冰川钻取得到,长度为55.1米,通过利用中国科学院青藏高原研究所 环境变化与地表过程重点实验室的MAT-253同位素质谱分析仪测得氧同位素数据,测量精度为0.05%。 数据采集地点: 宁金刚桑冰川(90.2°E,29.04°N,海拔高度5950米)
高晶
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.
Xuelong Chen
分别于2014年4月和2016年5月在黄河源区(黄河沿以上)采集的21个湖泊(7个非热融湖塘,14个热融湖塘),在加拿大维多利亚Inno Tech Alberta实验室通过Delta V Advantage Dual Inlet/HDevice system 测试氢氧同位素丰度,同位素丰度表达为δ(‰)形式(相对于维也纳平均海水丰度) 测试误差:δ18O: 0.1‰,δD: 1‰ ,数据还包括通过Google earth engine中 Landsat 2017影像数据提取得到的湖泊面积和湖泊流域面积。 通过的长期气象资料数据(多年平均气温,多年平均相对湿度,多年平均年降水量,多年平均年水面蒸发量),基于水量平衡及同位素质量守恒模型(模型参数也包括在数据集中)对湖泊水文信息,包括蒸发/入流比例(E/I)和湖泊流域产水量(WY)进行估算。
万程炜
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集包含从2017年1月1日到2018年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
王君波, 邬光剑
该数据集记录了阿里荒漠环境综合观测研究站,2017-2018年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据
赵华标
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
(1)数据提供了申扎站高寒草原观测场的空气温度(地面2米)、湿度、降水、气压、风速、辐射等关键气象要素的监测(2015年--至今)。中国科学院申扎高寒草原与湿地观测试验站是海拔4730米,是青藏高原第一个针对高寒草原建立的综合生态监测站。申扎生态监测站地处藏北腹地,位于冈底斯山和色林错之间,属南羌塘高原大湖盆地带,地势较缓,丘陵、高山与盆地相间。气候属于高原亚寒带半干旱季风气候区,紫花针茅群落是该区的优势群落。 (2)数据由自动气象站采集,并进行了日均值处理; (3)已对数据质量进行检查,所有数据均为原始数据; (4)数据集可作为相关研究的基础数据使用。
魏达, 王小丹
该数据集包含了2018年1月1日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络敦煌站气象要素梯度观测系统数据。站点位于甘肃敦煌西湖,下垫面是湿地。观测点的经纬度是93.709E,40.348N,海拔993m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_2m、RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_20cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_20cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_20cm)(单位:千帕)、土壤电导率(EC_5cm,EC_20cm)(单位:微西门子/厘米)光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);由于采集器故障,1.23-1.24数据丢失;由于塔体倾斜,3.17-5.24部分数据异常或丢失;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰, 唐文君, 卢麾, 秦军, 陈莹莹, 李新
该数据集包含了2015年1月1日至2015年12月31日黑河文气象观测网上游垭口站气象要素观测数据。站点位于青海省祁连县大冬树垭口,下垫面是高寒草甸。观测点的经纬度是100.2421E, 38.0142N,海拔4148m。发布的数据包括两个观测点,均在垭口观测站,相距10m左右,一套在2015年持续进行观测(30min输出),另一套为2015年9月18日在垭口新建的10m高气象站(10min输出),具体包括:空气温度、相对湿度传感器架设在5m处,朝向正北(两组观测,分别10min和30min输出);气压计安装在地面上的防撬箱内(两组观测,分别10min和30min输出);翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北(两组,分别10min和30min输出);四分量辐射仪包含两个观测点,其中一个安装在气象塔6m处,朝向正南(10min输出),另一个安装在离地1.5m高的支架上(30min输出);两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处(两组观测,分别10min和30min输出);土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处(两组观测,分别10min和30min输出);土壤热流板埋设在地下6cm处(两组观测,分别10min(3块热流板)和30min(2块热流板)输出)。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144或48个数据(每10min或30min),若出现数据的缺失,则由-6999标示;30min输出的四分量长波辐射在2015.1.1-4.1之间由于传感器的问题,数据缺失;30min观测数据在5.24-7.12之间由于采集器问题,数据缺失。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
车涛, 刘绍民, 李新, 徐自为, 张阳, 谭俊磊
该数据集包含了2015年1月1日至2016年12月31日黑河水文气象观测网上游峨堡站气象要素观测数据。站点位于青海省祁连县峨堡镇草场,下垫面是高寒草地。观测点的经纬度是100.9151E, 37.9492N,海拔3294m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;四分量辐射与红外温度在2015.10.11-11.05之间由于传感器的问题,数据缺失;11.1-11.5之间重新调试观测塔仪器,数据缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
车涛, 刘绍民, 李新, 徐自为, 张阳, 谭俊磊
该数据集包含了2015年1月1日至2017年12月31日黑河水文气象观测网上游阿柔超级站气象要素梯度观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。观测点的经纬度是100.4643E,38.0473N,海拔3033m。空气温度、相对湿度、风速传感器分别架设在1m、2m、5m、10m、15m、25m处,共6层,朝向正北;风向传感器架设在10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在阿柔超级站40m观测塔上;四分量辐射仪安装在5m处,朝向正南;两个红外温度计安装在5m处,朝向正南,探头朝向是垂直向下;光合有效辐射仪安装在5m处,朝向正南,探头朝向是垂直向上;土壤部分传感器埋设在塔体正南方向2m处,其中土壤热流板(自校正式)(3块)均埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复;土壤水分传感器分别埋设在地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复。 观测项目有:风速(WS_1m、WS_2m、WS_5m、WS_10m、WS_15m、WS_25m)(单位:米/秒)、风向(WD_10m)(单位:度)、空气温湿度(Ta_1m、Ta_2m、Ta_5m、Ta_10m、Ta_15m、Ta_25m和RH_1m、RH_2m、RH_5m、RH_10m、RH_15m、RH_25m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm_1、Ms_4cm_2、Ms_4cm_3、Ms_6cm、Ms_10cm_1、Ms_10cm_2、Ms_10cm_3、Ms_15cm、Ms_20cm、Ms_30cm、Ms_40cm、Ms_60cm、Ms_80cm、Ms_120cm、Ms_160cm Ms_200cm、Ms_240cm、Ms_280cm、Ms_320cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm_1、Ts_4cm_2、Ts_4cm_3、Ts_6cm、Ts_10cm_1、Ts_10cm_2、Ts_10cm_3、Ts_15cm、Ts_20cm、Ts_30cm、Ts_40cm、Ts_60cm、Ts_80cm、Ts_120cm、Ts_160cm Ts_200cm、Ts_240cm、Ts_280cm、Ts_320cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;土壤温湿度、土壤热通量在2015.9.9-9.19和9.30-10.20之间由于供电问题,数据缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-6-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
车涛, 刘绍民, 李新, 徐自为, 张阳, 谭俊磊
该数据集包含了2015年1月1日至2017年12月31日黑河水文气象观测网上游大沙龙站气象要素观测数据。站点位于青海省祁连县西侧沙龙滩地区,下垫面是沼泽草甸。观测点的经纬度是98.9406°E, 38.8399°N,海拔3739m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,并距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
车涛, 刘绍民, 李新, 徐自为, 张阳, 谭俊磊
该数据集包含了2015年1月1日至2017年12月31日黑河水文气象观测网上游景阳岭站气象要素观测数据。站点位于青海省祁连县景阳岭垭口,下垫面是高寒草甸。观测点的经纬度是101.1160E, 37.8384N,海拔3750m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
车涛, 刘绍民, 李新, 徐自为, 张阳, 谭俊磊
1) 数据内容(包含的要素及意义): 大气柱总含水量/可降水量、 儒略日Julian Day、经纬度和海拔高度; 2) 数据来源及加工方法: ECMWF-interm逐月再分析资料集 monthly mean analysis; 3) 数据质量描述:时间分辨率为逐月,空间分辨率:0.7°*0.7°; 4) 数据应用成果及前景:数据集给出了高原空中大气水资源的空间情况,用于分析高原空中水汽的时空变化及对周边地区降水的影响。
阎虹如
本数据集来源于欧洲中期天气预报中心(ECMWF)所发布的基于4维变分(4D-Var)的全球大气再分析数据集ERA-Interim。 ERA-Interim是欧洲中期天气预报中心(ECMWF)的一项主要任务,旨在通过改进的大气模型和同化系统来进行再分析,以取代ERA-40中使用的模型和同化系统,尤其在数据丰富的1990年代和2000年代下,并将继续作为ECMWF气候数据同化系统(ECDAS),直到被新的系统所取代。 自1997年起,由于计算力的系统性提升,使得4维变分同化(4D-Var)逐步可行并成为了ECMWF同化系统的一部分,这为ERA-Interim基于4D-Var打下了基础。计算力的加强还将水平分辨率从T159提升到了T255,且可以开始应用最新的集成预测系统(IFS CY31r1和CY31r2)和经过改进的物理参数化方案。 在垂直层上,ERA-interim与ERA-40一样又60层,最高层为0.1 hPa。此外,ERA-Interim的数据同化效果的提高还得益于质量控制,该质量控制借鉴了ERA-40和JRA-25的经验,卫星辐射数据的偏差校正以及通过改进的快速辐射传输模型更广泛地使用辐射。 在数据上,ERA-Interim使用了新的ERS(欧洲遥感卫星)高度波高度,EUMETSAT(欧洲气象卫星开发组织)重新处理的风和晴空辐射,来自卢瑟福·阿普尔顿实验室的GOME(全球臭氧监测实验)臭氧数据以及CHAMP(具有挑战性的微型卫星有效载荷),GRACE(重力恢复和气候实验)和COSMIC(气象,电离层和气候星座观测系统)由UCAR(大学大气研究公司)处理和存档的GPS无线电掩星测量。
邓创武
色季拉山气象数据,记录西藏林芝鲁朗附近进地表(1.2-1.5m)常规气象观测,数据集包括色季拉山东坡2005-2017年和113道班林外林线附近的2005-2012年的温度、湿度、降水量等的日平均数据。 数据采集地点色季拉山东坡林线附近29°39′25.2″N; 94°42′25.62″E; 4390m;色季拉山113道班阴坡林外29°35′50.9″N; 94°36′42.7″E; 4390m。 采集器型号Campbell Co CR1000,采集时间:30分钟。数字化自动采集数据,人工计算日均值。 包含如下基本气象参数: 道班阴坡林外数据: 风速,单位:m/s 气温,单位:℃ 相对湿度,单位:% 大气压,单位:hPa 总辐射,单位:w/m2 土壤热通量,单位:w/m2 土壤温度,单位:℃ 土壤湿度,单位:% 雨量,单位:mm 超声波测量的雪厚,单位:cm 东坡林线附近数据: 气温,单位:℃ 相对湿度,单位:% 气压,单位:hPa 风速,单位:m/s 降雨量,单位:mm 辐射,单位:w/m2 土壤含水率,单位:% 土壤热通量,单位:w/m2
罗伦
本数据集包含从2008年1月1日到2018年10月1日,斯里兰卡22个国际交换站观测的气温、气压、相对湿度、风速、风向、降水、辐射、水汽压等日值。 数据来源于NOAA的NCDC。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 本数据集所包含的气象站点信息如下: LATITUDE LONGITUDE ELEVATION  COUNTRY  STATION NAME +09.800  +080.067   +0015.0   SRI LANKA  KANKASANTURAI +09.650  +080.017   +0003.0   SRI LANKA  JAFFNA +09.267  +080.817   +0002.0   SRI LANKA  MULLAITTIVU +08.983  +079.917   +0003.0   SRI LANKA  MANNAR +08.750  +080.500   +0098.0   SRI LANKA  VAVUNIYA +08.539  +081.182   +0001.8   SRI LANKA  CHINA BAY +08.301  +080.428   +0098.8   SRI LANKA  ANURADHAPURA +08.117  +080.467   +0117.0   SRI LANKA  MAHA ILLUPPALLAMA +08.033  +079.833   +0002.0   SRI LANKA  PUTTALAM +07.706  +081.679   +0006.1   SRI LANKA  BATTICALOA +07.467  +080.367   +0116.0   SRI LANKA  KURUNEGALA +07.333  +080.633   +0477.0   SRI LANKA  KANDY +07.181  +079.866   +0008.8   SRI LANKA  BANDARANAIKE INTL COLOMBO +06.900  +079.867   +0007.0   SRI LANKA  COLOMBO +06.822  +079.886   +0006.7   SRI LANKA  COLOMBO RATMALANA +06.967  +080.767   +1880.0   SRI LANKA  NUWARA ELIYA +06.883  +081.833   +0008.0   SRI LANKA  POTTUVIL +06.817  +080.967   +1250.0   SRI LANKA  DIYATALAWA +06.983  +081.050   +0667.0   SRI LANKA  BADULLA +06.683  +080.400   +0088.0   SRI LANKA  RATNAPURA +06.033  +080.217   +0013.0   SRI LANKA  GALLE +06.117  +081.133   +0020.0   SRI LANKA  HAMBANTOTA
邓创武
本数据集来自中国科学院西北生态环境资源研究院那曲高寒气候环境观测研究站那曲观测场(31.37ºN,91.90º E,海拔高度4509m),观测场地平坦开阔,不均匀的生长着高度为3-20cm的植被。本数据集观测时间为2014年1月1日至2017年12月31日,观测要素主要包括风速、气温、空气相对湿度、气压、向下短波辐射、降水量、蒸发、潜热通量和CO2通量。其中降水量、蒸发和CO2通量数据为日累积值,其他观测要素为日平均值。观测数据总体上连续性较好,但由于供电故障导致部分数据缺测,数据中的缺测值标记为NAN。
胡泽勇, 谷良雷, 孙方林, 王树金
中亚野外气象站观测数据集包括中亚10个野外气象站气温、降水、风向风速、相对湿度、气压、辐射、土壤热通量、日照时间和土壤温度等实地观测数据。10个野外站涵盖农田、森林、草地、沙漠、荒漠、湿地、高原、山地等不同生态系统类型。本数据集由地面气象观测站收集到的气象原始数据经筛查和审核后,进行格式转换后获得。数据质量良好。中亚地区气候类型多样,生态环境脆弱,气象灾害频繁,本数据集的建立对于开展长期的中亚生态环境监测、防灾减灾、中亚地区气候变化与生态环境等领域的研究提供了数据支撑,目前已经在中亚生态环境监测研究中获得了应用。
李耀明
1、数据内容:气温、相对湿度、降水、气压、风速、平均总辐射、总净辐射值及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次数据,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川中部,气象数据可为模拟预测未来气候变化背景下海洋型冰川变化对全球气候变化的响应研究提供了数据保证。
刘婧
1、数据内容:气温、相对湿度、降水、气压、风速、总净辐射值及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次数据,逐日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川上部,气象数据可为海洋型冰川积雪-径流模型等提供数据支持,为冰川动力学模式和模拟研究提供了数据保证。
刘婧
1、数据内容:气温、相对湿度、降水、气压、风速及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川末端上部,气象数据可为模拟预测未来气候变化背景下海洋型冰川变化对全球气候变化的响应研究提供了数据保证。
刘婧
1、数据内容:气温、相对湿度、降水、气压、风速、平均总辐射及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站的下垫面类型为高山草甸,气象数据可为高寒区陆面过程模拟提供基础数据保障。
刘婧
CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0) 版本数据集引入STMAS同化算法技术,利用数据循环嵌套、重采样,模式推算及双线性插值等多种技术手段而建立。CMADS数据集按照SWAT模型输入驱动数据格式进行了格式整理与修正,使SWAT模型可直接使用该数据集而不需要任何格式转换。CMADS系列数据集同时建立了两种格式的数据(.dbf和.txt),方便其他它模型应用人员及气象分析人员调用与分析。CMADS数据源介绍:气温、气压、比湿、风速驱动数据采用了2421个国家级自动站和业务考核的39439个区域自动站2008年1月以来地面基本气象要素逐小时观测数据以及相应时期的台站信息(台站经纬度、海拔高度),利用多重网格三维变分方法(STMAS),在NCEP/GFS背景场基础上制作地面基本要素分析场;其中,中国区域以外,只对NCEP/GFS背景数据做地形调整、变量诊断,并插值到分析格点;中国区域以内,利用STMAS算法,将经过前处理的NCEP/GFS背景数据和自动站观测融合,并与中国区域以外的数据进行拼接。降水:由多卫星与地面自动站降水融合而成。其中,中国区域以外采用NCEP-CPC制作的CMORPH卫星融合降水产品,中国区域采用CMORPH产品为背景场融合中国降水自动站观测制作的中国区域小时降水量融合产品。辐射:基于DISSORT辐射传输模型,获取来自FY2E卫星一级产品实时反演太阳短波辐射产品。主要以ISCCP资料为背景数据,利用大气辐射传输模式DISORT对FY2D/E标称图数据进行反演,计算出分析格点上的地面入射太阳总辐射辐照度。CMADSV1.0系列数据集空间覆盖整个东亚(0°N-65°N,60°E-160°E), 空间分辨率分别为CMADS V1.0版本: 1/3°,CMADS V1.1版本: 1/4°,CMADS V1.2版本: 1/8°及CMADS V1.3版本: 1/16°,以上分辨率均为逐日(CLDAS同化场基本分辨率为1/16°,保证了CMADS数据集最高分辨率达1/16°),时间尺度为2008-2016年。 本页发布的数据集为CMADSV1.0版本数据集(空间分辨率:1/3°。时间分辨率:逐日。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。提供要素:日平均2米温度,日最高\低2米温度,日累计24时降水量,日平均太阳辐射,日平均气压,日比湿度,日相对湿度,日平均10米风速,提供数据格式:dbf及txt。该驱动数据已在我国多个流域进行了驱动验证,效果表现良好。 数据集元数据介绍 CMADS--SWAT驱动数据总体存放路径说明: 数据集分为专门驱动SWAT模型的子数据驱动集与其他模型使用的数据驱动集 1)专门驱动SWAT模型的子数据集路径为:CMADS-V1.0\For-swat\ 2)专门其他模型使用的子数据集路径为:CMADS-V1.0\For-other-model\ CMADS--SWAT驱动数据各子集文件路径及名说明 CMADS--SWAT驱动数据子集路径 1)CMADS的SWAT子数据驱动集(For-swat文件夹内),包含Station\与Fork\子目录。 其中Station\目录下为SWAT模型需要的所有输入数据(逐日)。以上输入数据分别位于以下目录: Relative-Humidity-58500\ 日平均相对湿度(fraction) Precipitation-58500\ 日累计降水量(mm) Solar radiation-58500\ 日平均太阳辐射(MJ/m2) Tmperature-58500\ 日最高、最低2米气温(℃) Wind-58500\ 日平均10米风速(m/s) CMADS--SWAT驱动数据子集命名格式 中国大气数据同化SWAT模型数据集(CMADS)的SWAT子集文件命名: 数据集代码由要素代码:R、P、S、T、W+维度格网数-经度格网数组成(经纬度网格数提取参见CMADS数据集使用手册.pdf)。 CMADS--SWAT驱动数据子集命名格式实体文件的内容描述: 数据集时间尺度:2008年-2016年间共9年数据文件 空间分辨率:1/3度 时间分辨率:逐日 要素数据存放格式:dbf 索引表存放格式:txt CMADS--SWAT驱动数据子集索引表: 其中Fork\目录下为SWAT模型需要的所有站点索引表。以上输入数据索引表均可用以下索引表索引: PCPFORK.txt 降水索引表 RHFORK.txt 相对湿度索引表 SORFORK.txt 太阳辐射索引表 TMPFORK.txt 温度索引表 WINDFORK.txt 风速索引表 CMADS其他模式驱动数据子集路径 CMADS的SWAT子数据驱动集(For-other-model文件夹内),包括常规模型需要的所有气象输入数据(逐日)。以上输入数据分别位于以下目录: Atmospheric-Pressure-txt\ 日平均大气压强(hPa) Average-Temperature-txt\ 日平均2米气温(℃) Maximum-Temperature-txt\ 日最高2米气温(℃) Minimum-Temperature-txt\ 日最低2米气温(℃) Precipitation-txt\ 日累计降水(mm) Relative-Humidity-txt\ 日平均相对湿度(fraction) Solar-Radiation-txt\ 日平均太阳辐射(MJ/m2) Specific-Humidity-txt\ 日平均比湿(g/kg) Wind-txt\ 日平均10米风速(m/s) For-other-model 子集文件命名: CMADS_V1.0_PRS_纬度格网数-经度格网数.txt 日平均大气压强(hPa) CMADS_V1.0_TMP_AVG_纬度格网数-经度格网数.txt 日平均2米气温(℃) CMADS_V1.0_TMP_MAX_纬度格网数-经度格网数.txt 日最高2米气温(℃) CMADS_V1.0_TMP_MIN_纬度格网数-经度格网数.txt 日最低2米气温(℃) CMADS_V1.0_24h_PRE_纬度格网数-经度格网数.txt 日 24h 累计降水(mm) CMADS_V1.0_RHU_纬度格网数-经度格网数.txt 日平均相对湿度(fraction) CMADS_V1.0_SOR_纬度格网数-经度格网数.txt 日平均太阳辐射(MJ/m 2 ) CMADS_V1.0_SHU_纬度格网数-经度格网数.txt 日平均比湿(g/kg) CMADS_V1.0_WIND_纬度格网数-经度格网数.txt 日平均10米风速(m/s) 数据存储信息 存储格式和读取:数据集存储格式分为SWAT子集文件(dbf文件),及其他模式数据集(txt文件)。 数据集附属说明文档: metadata:元数据文档(CMADS_META_C.pdf)。 description:说明文档(CMADS_DOCU_C.pdf)。 数据总量:33.6GB 占用空间:35.2GB 时间范围:2008年-2016年 时间分辨率:逐日 地理范围描述:东亚 最西经度:60°E 最东经度:160°E 最北纬度:65°N 最南纬度:0°N 台站数量:58500站 空间分辨率: 1/3°×1/3°网格点 垂直范围:无
孟现勇, 王浩
CMADS V1.1(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1) 版本数据集引入STMAS同化算法, 利用数据循环嵌套,模式推算等多种技术手段而建立。CMADS V1.1数据集按照SWAT模型输入驱动数据格式进行了格式整理与修正,使SWAT模型可直接使用该数据集而不需要任何格式转换。CMADS V1.1数据集同时建立了两种格式的数据(.dbf和.txt),方便其他它模型应用人员及气象分析人员调用与分析。CMADS数据源介绍:气温、气压、比湿、风速驱动数据采用了2421个国家级自动站和业务考核的29452个区域自动站2009年1月以来地面基本气象要素逐小时观测数据以及相应时期的台站信息(台站经纬度、海拔高度),利用多重网格三维变分方法(STMAS),在NCEP/GFS背景场基础上制作地面基本要素分析场;其中,中国区域以外,只对NCEP/GFS背景数据做地形调整、变量诊断,并插值到分析格点;中国区域以内,利用STMAS算法,将经过前处理的NCEP/GFS背景数据和自动站观测融合,并与中国区域以外的数据进行拼接。降水:由多卫星与地面自动站降水融合而成。其中,中国区域以外采用NCEP-CPC制作的CMORPH卫星融合降水产品,中国区域采用CMORPH产品为背景场融合中国降水自动站观测制作的中国区域小时降水量融合产品。辐射:基于DISSORT辐射传输模型,获取来自FY2E卫星一级产品实时反演太阳短波辐射产品。主要以ISCCP资料为背景数据,利用大气辐射传输模式DISORT对FY2D/E标称图数据进行反演,计算出分析格点上的地面入射太阳总辐射辐照度。本页发布的数据集为CMADS V1.1版本空间分辨率: 1/4°,时间分辨率:逐日,时间尺度为2008-2016年。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。提供要素:日平均2米温度,日最高\低2米温度,日累计24时降水量,日平均太阳辐射,日平均气压,日比湿度,日相对湿度,日平均10米风速,提供数据格式:dbf及txt。 CMADS V1.1元数据介绍 CMADS V1.1--SWAT驱动数据总体存放路径说明: 数据集分为专门驱动SWAT模型的子数据驱动集与其他模型使用的数据驱动集 1)专门驱动SWAT模型的子数据集路径为:CMADS-V1.1\For-swat\ 2)专门其他模型使用的子数据集路径为:CMADS-V1.1\For-other-model\ CMADS V1.1--SWAT驱动数据各子集文件路径及名说明 CMADS V1.1--SWAT驱动数据子集路径 1)CMADS V1.1的SWAT子数据驱动集(For-swat文件夹内),包含Station\与Fork\子目录。 其中Station\目录下为SWAT模型需要的所有输入数据(逐日)。以上输入数据分别位于以下目录: Relative-Humidity-104000\ 日平均相对湿度(fraction) Precipitation-104000\ 日累计降水量(mm) Solar radiation-104000\ 日平均太阳辐射(MJ/m2) Temperature-104000\ 日最高最低2米气温(℃) Wind-104000\ 日平均10米风速(m/s) CMADS V1.1--SWAT驱动数据子集命名格式 中国大气数据同化SWAT模型数据集(CMADS)的SWAT子集文件命名: 数据集代码由要素代码:R、P、S、T、W+维度格网数-经度格网数组成(经纬度网格数提取参见CMADS数据集使用手册.pdf)。 CMADS V1.1--SWAT驱动数据子集命名格式实体文件的内容描述: 数据集时间尺度:2008年-2016年间共9年数据文件 空间分辨率:1/4度 时间分辨率:逐日 要素数据存放格式:dbf 索引表存放格式:txt CMADS V1.1--SWAT驱动数据子集索引表: 其中Fork\目录下为SWAT模型需要的所有站点索引表。以上输入数据索引表均可用以下索引表索引: PCPFORK.txt 降水索引表 RHFORK.txt 相对湿度索引表 SORFORK.txt 太阳辐射索引表 TMPFORK.txt 温度索引表 WINDFORK.txt 风速索引表 CMADS V1.1其他模式驱动数据子集路径 CMADS V1.1的SWAT子数据驱动集(For-other-model文件夹内),包括常规模型需要的所有气象输入数据(逐日)。以上输入数据分别位于以下目录: Atmospheric-Pressure-txt\ 日平均大气压强(hPa) Average-Temperature-txt\ 日平均2米气温(℃) Maximum-Temperature-txt\ 日最高2米气温(℃) Minimum-Temperature-txt\ 日最低2米气温(℃) Precipitation-txt\ 日累计降水(mm) Relative-Humidity-txt\ 日平均相对湿度(fraction) Solar-Radiation-txt\ 日平均太阳辐射(MJ/m2) Specific-Humidity-txt\ 日平均比湿(g/kg) Wind-txt\ 日平均10米风速(m/s) 数据存储信息 存储格式和读取:数据集存储格式分为SWAT子集文件(dbf文件),及其他模式数据集(txt文件)。 数据集附属说明文档: metadata:元数据文档(CMADS_META_C.pdf)。 description:说明文档(CMADS_DOCU_C.pdf)。 数据总量:45GB 占用空间:50GB 时间范围:2008年-2016年 时间分辨率:逐日 地理范围描述:东亚 最西经度:60°E 最东经度:160°E 最北纬度:65°N 最南纬度:0°N 台站数量:104000站 空间分辨率: 1/4°×1/4°网格点 垂直范围:无
孟现勇, 王浩
该数据集包含孔雀河源观测点的气温、降水、相对湿度、风速、风向等日值。 观测时间从2012年7月2日至2017年9月15日。利用自动气象站(Onset公司),每2小时记录一条数据。 原始数据经过质量控制后形成连续时间序列。通过计算得到每日均值指标数据。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度。质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据以excel文件存储。
张寅生
该数据集包含了位于中国科学院青藏高原研究所阿里站所释放的探空仪器的观测数据,观测时间分别为2017/9/2 12时,16时,20时,2017/9/3 16时,20时 2017/9/4 8时,12时,16时,20时 2017/9/5 0时,4时,8时,12时,16时,20时 2017/9/6 0时,4时,8时。 原始数据精度:精确到整数位的数据分别有对数气压,相对湿度,高度,水平风风向,方位角,仰角。精确到一位小数的数据分别有温度,气压,露点温度,水平风风速,经度。精确到两位小数的数据有经向风速,纬向风速,水汽混合比,纬度。质量控制应包括剔除缺测,空测数据。 数据以excel文件存储。
马伟强
该数据集包含昆莎冰川末端观测点的气温、降水、相对湿度、风速、风向等日值。 观测时间从2015年10月3日至2017年9月19日。利用自动气象站(Onset公司),每2小时记录一条数据。 原始数据经过质量控制后形成连续时间序列。通过计算得到每日均值指标数据。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度。质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据以excel文件存储。
张寅生
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件