该数据集包括青藏高原不同地区不同环境介质的碳质组分的碳同位素数据(10个青藏高原典型站点的气溶胶中黑碳和有机碳的碳同位素数据、11个雪坑不同年份的黑碳和水不溶性有机碳的碳同位素数据、及青藏高原及其周围地区11个站点季风期降水中水溶性有机碳的碳同位素数据),所有样品均为各个站点实地采集,测试了各碳质组分的含量及δ13C和Δ14C数据,利用该数据可以精确评估大气碳质气溶胶和沉降在冰川上碳质颗粒物以及降水中水溶性有机碳的来源以化石燃料和生物质燃料的贡献比例。
李潮流
本数据集包括青藏高原典型站点(然乌(2018-2021)、纳木错(2013-2016)、珠峰(2013-2016)、鲁朗站(2015-2016))的大气和降水中碳质组分的吸光数据,所有样品均来自于各个采样点实地采集,测试了黑碳和水溶性有机碳的浓度,以及吸光数据,利用表示吸光能力的指标(MAC值),计算了水溶性有机碳和黑碳的吸光的MAC值,该数据对于评估大气中碳质颗粒物的辐射强迫具有重要意义,是模型模拟输入的重要基础数据。
李潮流
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
江利明
基于雅鲁藏布江流域内已有的262个雨量筒逐月降水数据、WRF和ERA5降水数据,利用随机森林学习算法重建了雅鲁藏布江流域及7个子流域1951–2020年10km分辨率的逐日降水数据。该数据经过了站点单点验证,在年和季节变化方面表现较好。并且该数据经过了水文模型反向评估,利用该数据驱动VIC水文模型模拟了雅江流域及各子流域径流变化,并利用实测径流、MODIS及冰川编目数据进行验证。该数据在原有第一版基础上考虑了降水空间分配特征,能更好描述高山区降水特征。
孙赫
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
海冰的减少和表面融水的增加,可能诱发冰流加速和锋面塌陷,对格陵兰冰架的稳定性有重大影响。然而,由于稀少的遥感观测,快速崩解之前的详细冰动态前兆和驱动因素仍然不清楚。我们通过联合使用高时空分辨率的遥感观测和冰流模型,对格陵兰岛北部Petermann冰川2017年7月26日崩解事件前的水文和运动学前兆进行了全面调查。2017年7月期间的冰流速度场的时间序列是通过Sentinel-2的观测来检索的,采样间隔为次周。冰流速度在7月26日(崩解前一天)迅速达到30米/天,这大约是平均冰川速度的10倍。
江利明
冰川是全球气候变化的放大器和指示器,目前在全球气温升高的背景下,全球范围内冰川融化持续加快。跃动冰川是一种有着间歇性和周期性加速运动的冰川,其对气候变化非常敏感。本数据集基于Landsat和Sentinel系列多源光学卫星遥感影像数据,通过对影像进行筛选、拼接、裁剪获得研究区域影像。其中,对Landsat TM 影像中L1GS 级别影像采用二阶多项式进行配准校正,影像配准后误差小于一个像素。之后利用方向相关算法进行影像匹配,生成了格陵兰冰盖典型的跃动冰川——Sortebræ 冰川在1980s至2020 年期间不同阶段的表面运动速度。本数据集期望有助于对Sortebræ 冰川跃动过程的研究,以及对全球变暖背景下冰川跃动机理的探讨。
乔刚, 孙子翔, 袁小涵
根据不同源的冰川区的相关地形数据的特点,利用所建立的冰川高程提取方法进行冰川区高程数据的提取。技术路线主要包括:(1)冰川高程变化提取:基于Matlab的数字图像处理平台,开发一套集KH-9畸变光标精确识别、影像畸变校正、影像无缝拼接等功能的KH-9影像预处理程序,实现KH-9影像的自动化预处理,并在此基础上对预处理后的KH-9立体像对提取研究区冰川1970年的DEM数据,然后结合SRTM数据,利用多源高程差值校正方法,通过Matlab编程实现DEMs的配准和高程相关偏差改正,最后计算冰川1970—2000年间的冰川高程变化;(2)基于ICEsat数据进行冰川高程变化提取:首先利用NSIDC提供的IDL Readers tool 工具将GLA14二进制格式数据转换为ASCII 文本数据,然后通过Matlab编程对其进行饱和改正和坡度、云层误差剔除后处理,并利用多源高程差值校正方法,实现ICEsat和SRTM数据的配准和高程相关偏差改正,最后利用年变化趋势回归拟合方法来获取冰川2003—2009年间的高程变化;(3) 根据两种不同类型的冰川地形数据进行冰川高程变化的提取。
周建民
根据不同源的冰川区的相关地形数据的特点,利用所建立的冰川高程提取方法进行冰川区高程数据的提取。技术路线主要包括:(1)冰川高程变化提取:基于Matlab的数字图像处理平台,开发一套集KH-9畸变光标精确识别、影像畸变校正、影像无缝拼接等功能的KH-9影像预处理程序,实现KH-9影像的自动化预处理,并在此基础上对预处理后的KH-9立体像对提取研究区冰川1970年的DEM数据,然后结合SRTM数据,利用多源高程差值校正方法,通过Matlab编程实现DEMs的配准和高程相关偏差改正,最后计算冰川1970—2000年间的冰川高程变化;(2)基于ICEsat数据进行冰川高程变化提取:首先利用NSIDC提供的IDL Readers tool 工具将GLA14二进制格式数据转换为ASCII 文本数据,然后通过Matlab编程对其进行饱和改正和坡度、云层误差剔除后处理,并利用多源高程差值校正方法,实现ICEsat和SRTM数据的配准和高程相关偏差改正,最后利用年变化趋势回归拟合方法来获取冰川2003—2009年间的高程变化;(3) 根据两种不同类型的冰川地形数据进行冰川高程变化的提取。
周建民
数据包括青藏高原内流冰川1975-2000表面高程空间变化 (100 m)、内流区各子流域1975-2020冰川的平均高程变化值以及流域边界和分区三个文件。1975-2000年冰川表面高程变化,基于32对KH-9数据和NASADEM获取,其中木孜塔格和普若岗日地区的结果分别来自Zhou et al. (2018)和Bhattacharya et al.(2021)。1995-2020期间,各流域每5年的平均高程变化结果,根据Hugonnet et al.(2021)公布的数据进行计算,这里假设1995-2000的冰川厚度变化情况与2000-2005类似。受KH-9数据质量限制及内流区冰川特性的影响,空值区域较多,建议结合分区,首先计算各个高程带的变化结果,再映射到每个子流域。
陈文锋, 张国庆
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
持续的全球变暖和冰冻圈退化正在引起人们对适应山区环境不稳定的关注。近几十年来,与冰川有关的斜坡崩塌,如冰崩、冰川上的岩崩,已被频繁记录。在这项研究中,我们建立了一个与冰川有关的滑塌的全球清单,以研究它们的分布、趋势、断裂以及与气候变化的关系。在1901-2019年期间,共记录了737起与冰川相关的滑塌事件,包括156次冰崩,89次冰-岩崩,26次冰川滑塌,以及466次冰川上岩崩。西北太平洋地区有记录的案例最多(N=440,60%),其中以冰川上岩崩最为主要。此外,整合与完善了目前公布的地区或全球性质的冰湖溃决洪水清单,并单独分离出了冰碛湖溃决洪水事件。1901-2020年间共统计到380起冰碛湖溃决洪水事件,是目前最为完善的全球范围内的清单。
张太刚, 王伟财
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
亚洲高山区是世界第三极,称之为“亚洲水塔”,受气候变暖的影响,冰川持续亏损,深刻改变了冰川水资源的供需关系。为了系统认识冰川对气候变化的响应程度,项目通过冰川物质平衡的敏感性,揭示冰川物质平衡变化与气候因子之间的关系。数据包括两张图:物质平衡对气温的敏感性和物质平衡对降水的敏感性图,冰川气候敏感性分区图。 在过去70年亚洲高山区各山系的冰川物质平衡演化序列差异显著,喀喇昆仑和西昆仑地区的冰川呈现出稳定态,物质平衡为微弱的正平衡,而喜马拉雅山、天山和祁连山在1990年之后出现加速退缩的趋势。这主要归因于物质平衡对气温、降水等敏感性。利用0.5°分辨率的ERA5 气温和降水数据驱动月尺度的物质平衡模型,通过43条监测冰川的物质平衡率定参数,2000-2016年的1°×1°ASTER物质平衡数据对参数进行空间约束,利用空间参数外推的方法重建了1951-2020年亚洲高山区95085条冰川的物质平衡序列,分析了冰川物质平衡对气温(±0.5k、±1k、±1.5k)和降水(±10%、±20%、±30%)的敏感性,根据物质平衡的空间敏感性差异,结合冰川物质平衡的影响要素(夏季气温的分布、夏季降水的比率、冰川类型的分布、夏季晴空太阳辐射分布等),对亚洲高山区的冰川气候敏感性进行归类划分,主要分为为4类: 气温主控区:指气温是冰川物质平衡变化的主要控制因素,降水占据次要位置; 降水控制区:指冰川主要受降水控制,全年的冰川区气温低于0℃; 冬季累积型冰川气温、降水控制区:指冰川主要受冬季的降水补给,冰川的物质平衡变化是气温和降水共同作用的结果; 夏季累积型冰川气温、降水控制区:指冰川的补给方式是夏季降水,冰川的物质平衡是气温和降水共同作用的结果。
上官冬辉
1)数据内容为慕士塔格峰周围冰川在全新世留下的冰碛物宇宙成因核素10Be的暴露年代,包括采样地点、10Be浓度、计算结果等。2)10Be浓度数据来源于发表的文献,参考全球最新的10Be产率,使用三种不同的产率校正方法来计算冰碛物样品的暴露年代。3)相比于原始发表文献的年代数据,此数据更为精确,而且三种方法给出的年代结果可以相互对比,误差范围内集中度较好。4)该数据可用于认识帕米尔地区冰川全新世变化规律,为高原西北部冰川演化的年代学对比提供数据支撑。
许向科, 徐柏青
1)数据包含了1900-2011年以来年尺度的冰芯氧同位素和积累量记录,它们分别反映了研究区域的气温和降水变化;2)分析时,首先使用PICARRO测量冰芯样品 δ18O,并按照 δ18O的季节变化特征对冰芯定年;冰芯积累量根据冰芯密度、每年冰芯长度,并结合冰川流动模型计算生成;3)专业实验员和一线科研人员操作、维护仪器,确保分析数据可靠;4)该数据可用于分析青藏高原典型西风区一百余年来的气候环境变化规律,并能用于探讨这一时期的冰川演变,为预测将来冰川演变、水文水资源的变化及其对人类活动的影响提供科学参考。
徐柏青
冰川表面反照率是冰川质量和能量平衡过程的一个关键参数。该数据内容包括亚洲高山区2000-2020消融期内(6月-8月)每年的年平均冰川表面反照率和年最小冰川表面反照率。基于MODIS 500m分辨率的每日积雪反照率产品(包括MOD10A1和MYD10A1),首先对上午星数据MOD10A1和下午星数据MYD10A1采用均值合成,其次采用±2天窗口内的数据采用均值滤波进行插值和空值填补,最后基于最小和平均值方法得到亚洲高山区冰川的年平均反照率和年最小反照率。相比较原始数据,数据的精度和覆盖程度都得到极大的提高。可为研究冰川反照率与物质平衡之间的关系以及建立相关冰川模型提供冰面反照率输入数据。
肖瑶
近年来,随着南极冰盖消融的加速,冰盖2000-2019表面形成大量冰面融水。深入理解南极冰盖冰面融水的时空间分布与动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集基于2000-2019年30m空间分辨率Landsat7和Landsat8影像,利用归一化水体指数、Gabor滤波和形态学路径开操作,生成冰面融水栅格数据集,在ARCGIS中将栅格水体掩膜转换为矢量数据。本数据集是基于Landsat影像提取的2000-2019年南极冰盖消融区(南极半岛亚历山大岛)250m冰面融水数据集。时间集中在每年12月至次年2月(南半球夏季)
杨康
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
1963年东南极Rayner冰川基于ARGON历史遥感影像的冰流速度场数据产品。利用间隔两个月的两张1963年拍摄的解密卫星影像,基于视差分解进行分层匹配,估算了南极洲东部雷纳冰川的早期冰流速度场。估算得到速度图的精度可达到70米/年。基于光学立体像对视差分解的协同冰川表面流速估算方法。首先对待匹配影像生成核心影像,并生成核心影像的金字塔;接下来使用冰流区域掩膜,将影像分为冰流区与非冰流区分别进行匹配,其中冰流区除正常匹配步骤外,还需要进行视差分界,从而区分冰流运动对于地形视差的影响。最终通过逐层匹配的方法,我们可以在底层得到物方的DTM及冰流图。本数据对于重建东南极Rayner冰川早期表面形态及其冰流速度具有重要意义。
李荣兴, 乔刚, 叶文凯
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
本数据为祁连山地区2018年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2018年祁连山全境的高分系列影像。参考数据为哨兵2号影像、谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2018年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2019年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2019年祁连山全境的高分系列影像。参考数据为哨兵2号影像、谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2019年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为哨兵2号影像、谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2021年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2021年祁连山全境的高分系列影像。参考数据为哨兵2号影像、谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2021年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
本数据包括2018-2020年亚洲高山区(High Mountain Asia, HMA)冰川高程变化数据。该数据集基于ICESat-2数据,考虑不同高程和不同坡向上冰川变化及面积分布的不均匀性,利用ICESat-2数据(2018-2020年)以及2000年的SRTM DEM数据计算了亚洲高山区冰川高程变化(1°×1°网格内的各个高程和坡向上冰川面积加权平均)。该数据能够提供亚洲高山区2018-2020年相对于2000年冰川高程逐年变化信息,可以作为基础数据应用于亚洲高山区气候变化研究中。
沈聪, 贾立
本数据包括2003-2008年亚洲高山区(High Mountain Asia, HMA)冰川高程变化数据。该数据集基于ICESat-1数据,考虑不同高程和不同坡向上冰川变化及面积分布的不均匀性,利用ICESat-1数据(2003-2008年)以及2000年的SRTM DEM数据计算了亚洲高山区冰川高程变化(1°×1°网格内的各个高程和坡向上冰川面积加权平均)。该数据能够提供亚洲高山区2003-2008年相对于2000年冰川高程逐年变化信息,可以作为基础数据应用于亚洲高山区气候变化研究中。
沈聪, 贾立
1) 数据为2021年7月26日至28日测量的小冬克玛底冰川厚度、测点坐标和高程;2) 数据采用中国水利水电科学研究院研发的工作频率为100MHz的探地雷达测量得到,冰川厚度通过对雷达回波图像的处理分析,利用公式计算得到,其中冰体的介电常数取值为3.2,测点坐标和高程采用RTK系统获取;3) 数据可用于冰川厚度变化、物质平衡和径流变化等相关研究。
付辉
冰川厚度变化是冰川变化监测的关键参数,利用历史高分KH-9影像(1974年)、SRTM DEM数据产品 (2000年)、TanDEM-X双站干涉SAR数据(2011-2014)和SPOT-7影像(2015年)数据并分别基于光学摄影测量技术和雷达干涉测量技术制备了藏东南雅弄冰川区的多期的数字高程模型。其中,对于TanDEM-X雷达数据,在数据处理过程中对其在冰川区的几何定位误差进行了去除,同时针对KH-9 DEM中雪盖区的异常变化值进行了剔除。然后经过X波段和C波段雷达波穿透深度改正最后生成了雅弄冰川在1975-2015年期间的年代际和年际的厚度变化数据集。该数据空间分辨率为30m,可进一步用于冰川演变模型参数标定,分析冰川未来变化等方面。
周玉杉, 李新, 郑东海, 李志伟
1) 数据内容:藏东南地区近二十年的冰川表面高程变化数据,包括2000-2020年时间变化序列及2000和2019年间0.5°网格尺度的冰川表面高程变化数据。 2) 数据来源及加工方法:2000-2020年时间变化序列由联合卫星测高数据(ICESat、CryoSat-2、ICESat-2)、地形数据(2014年ASTER L1A数据生产的DEM)、卫星重力数据(GRACE及GLDAS)的冰川监测方法获得。网格尺度的冰川表面高程变化数据由ICESat-2数据与NASADEM计算得到。 3) 数据质量描述:本数据与无人机航拍结果、GPS观测结果及以往文献结果较为一致,且时间分辨率和空间分辨率有较大提升。 4) 数据应用成果及前景:本数据可用于率定冰川水文模型,也可与后续研究做对比。
赵凡玉, 龙笛, 李兴东, 黄琦, 韩鹏飞
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为末次冰盛期以来亚洲高山区冰川分布的模拟数据,其中包括典型区域(亚洲高山区、天山、喜马拉雅山、帕米尔高原)年分辨率的冰川面积变化序列以及典型时期(LGM(20000~19000ka),HS1(17000~16000ka),BA(~14900~14350ka),YD(12900~12000ka),EH(9500~8500ka),MH(6500~5500ka),LH(3500~2500ka)和Modern(1951~1990))1km分辨率的亚洲高山区冰川分布。该数据以基于CCSM3气候模式的TRACE全强迫模拟试验数据为外强迫场,驱动1km分辨率的PISM冰盖模式,从而获取末次盛冰期以来亚洲高山区冰川的可能分布。该数据可以用于研究末次冰盛期以来亚洲高山区冰川分布的变化及其对湖泊水位、径流、地貌等环境和气候要素的影响。
燕青
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)水下20cm左右,绝对压力和水体温度。该自动水位计的数据采用USB离线获取的方式收集,初始记录时间为2021年6月19日20时00分,记录间隔为10分钟,2021年9月18日11:00现场下载数据。数据完整。
张东启
青藏高原及周边地区雪冰吸光性杂质数据集包含9条冰川(乌鲁木齐河源1号冰川,老虎沟12号冰川,小冬克玛底冰川,仁龙巴冰川,白水河1号冰川,以及帕米尔地区的Golubin冰川,Abramov冰川,Syek ZapadniyI并处和No.354冰川)的黑碳与粉尘浓度数据,及其吸光截面(MAC)数据。雪冰黑碳数据利用DRI 2015 model热光碳分析仪测试获得,粉尘数据利用称重法获得。采样以及实验过程均严格按照要求执行。数据可用于雪冰反照率以及气候效应研究。
康世昌
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
格陵兰冰盖的物质损耗是近几十年来全球海平面上升的主要贡献者,在全球变暖的趋势下,格陵兰冰盖正在加速融化,探索其物质平衡对气候的变化响应具有重要的科学意义。作者基于MEaSUREs格陵兰触地线产品和流域边界,将触地线离散化,结合1985-2015年的MEaSUREs年度冰流速数据,和BedMachine v3冰厚度数据,矢量计算触地线各通量出口单元处冰通量;我们使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到格陵兰冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的格陵兰冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年格陵兰冰盖各流域物质平衡的变化情况和空间分布特征,为后续格陵兰冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
南极冰盖是全球海平面上升的最大潜在来源之一,准确确定冰盖物质收支情况是理解南极冰盖动态变化的关键,对理解冰盖演变历程、准确预测未来全球海平面上升都是至关重要的。作者基于MEaSUREs触地线产品和MEaSUREs南极流域边界,将触地线离散化,结合1985-2015年的MEaSUREs和RAMP年度冰流速数据,和BedMachine冰厚度数据,矢量计算触地线各通量出口单元处冰通量;使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到南极冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的南极冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年南极冰盖各流域物质平衡的变化情况和空间分布特征,为后续南极冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
2015年至2020年,青藏高原的15号冰川 (NO.15)、24K冰川(24K)、阿扎冰川(AZ)、措普沟冰川(CPG)、德木拉冰川(DML)、东绒布冰川(DRB)、冬克玛底冰川(DKMD)、敦德冰川(DD)、古里雅冰川(GLY)、红旗拉普冰川(HQLP)、康西瓦河冰川(KXW)、抗物热冰川(KWR)、廓琼岗日冰川(KQGR)、朗阿定日冰川(LADR)、蒙达岗日冰川(MDGR)、木嘎岗穹冰川(MGGQ)、木吉冰川(MJ)、慕士塔格冰川(MSTG)、纳木那尼冰川(NMNN)、尼玛冰川(NM)、怒江源头(NJYT)、帕隆4号冰川(PL4)、羌塘1号冰川(QT)、枪勇冰川(QY)、曲玛冰川(QM)、色齐拉冰川(SQL)、唐古拉龙匣宰陇巴冰川(LXZ)、夏岗江冰川(XGJ)、雅拉冰川(YL)、泽普沟冰川(ZPG)、朱西沟冰川(ZXG)共31条冰川冰雪的理化性质特征,包括DOC、TN及主要阴阳离子浓度(钙离子、镁离子、钾离子、钠离子,铵根离子、氯离子、亚硝酸根离子、硝酸根离子、硫酸根离子浓度)。样品通过0.45微米分子膜过滤后,使用岛津TOC-L仪器检测,离子浓度则通过离子色谱仪检测。指标单位为mg/L,“n.a.”表示低于仪器检测限,“\”表示缺失值。表格中sheet1为“青藏高原冰川雪冰理化性质(2015-2020)”,sheet2为“冰川基本信息”。
刘勇勤
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件