道路噪音屏障(RNBs)是建设宜居城市的重要城市基础设施。然而,缺乏关于RNBs的大规模、准确的地理空间数据,阻碍了城市的合理规划、城市可持续发展和城市环境的不断改善。为了解决这个问题,本研究提出了一个地理空间人工智能框架,使用街景图像在中国创建矢量化RNB数据集。首先,基于OpenStreetMap对每个城市的路网进行密集采样,作为下载 600 万张百度街景 (BSV) 图像的地理参考。此外,还开发了基于集成学习策略的包含图像背景信息 (IC-CNN) 的卷积神经网络,以从BSV图像中检测RNB。随后,基于识别出的RNB位置生成以折线形式呈现的RNB数据集,总长度为2667.02公里,分布于222个城市。最后从两个角度评价RNB数据集的质量:一是检测精度;二是完整性和定位精度。基于一组随机选择的包含 10,000 张 BSV 图像的样本,计算了四个量化指标:总体准确率为 98.61%,召回率为 87.14%,准确率为 76.44%,F1-score 为 81.44%。此外,使用BSV图像对不同城市总长度254公里的道路进行人工调查,以评估生成的和调查的RNB之间的里程偏差和交并比:里程偏差的均方根误差为0.08公里,交并比为88.08 % ± 2.95 %。评估结果表明,生成的 RNB 数据集质量高,可作为准确可靠的数据集用于各种大规模城市研究。
陈旻
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件