照片包含每日(2021.6.15-2021.7.24)科考灾害点和工作照,对每天所记录的灾害点在地图上进行标识,转化为KMZ格式,在GIS上分析科考区域灾害点的分布。灾害点分布发现,在东线沿途及科考县域内灾害点多分布降雨型滑坡、泥石流及崩塌、山洪等类型灾害且分布较为密集,沿线公路及人口相对较多,存在较高综合风险。在西线则相对较多分布风沙、山地侵蚀点以及崩塌滑坡等地质灾害,科考队伍军队以上灾害典型照片影像、灾害点、路线及日志内容做出记录。以上资料是研究科考的直观资料,对科考研究的关键输入数据以及检验资料,同时对客观判识科考区域灾害类型、分布和防灾减灾措施具有基础性意义。
张正涛
本数据包含:喜马拉雅山区30m山洪综合风险数据、30m山洪危险性数据、30m山洪承灾体数据、30m山洪易损性分布数据。数据基于全国山洪灾害调查评价成果,得到研究区内山洪灾害综合风险指标分布、各行政村山洪危险性指标分布、山洪承灾体指标分布、山洪易损性指标分布,形成喜马拉雅山区山洪灾害综合风险分布数据。本数据有助于对山洪灾害的空间变化特点和分布规律的分析,山洪灾害风险的分区划分对于防汛应急部门的防汛管理和防汛部署具有一定指导作用。
王中根
本数据集包含喜马拉雅山区1:100万历史山洪灾害数据、喜马拉雅山区1:100万山洪防治区分布数据、喜马拉雅山区1:100万山洪分区分布数据、喜马拉雅山区1:100万重点防治区分布数据。各项数据均基于全国山洪灾害调查评价成果,得到研究区内历史山洪灾害发生时间、地点、灾害类型、成因、经度、纬度、数量、分布及因灾遇难人数信息,以及研究区内山洪分区分布、防治区范围分布和重点防治区分布数据,形成喜马拉雅山区历史山洪灾害分布数据集。
王中根
为全面贯彻《科学数据管理办法》中针对“政府预算资金资助形成的科学数据应当按照开放为常态、不开放为例外的原则,由主管部门组织编制科学数据资源目录,有关目录和数据应及时接入国家数据共享交换平台,面向社会和相关部门开放共享,畅通科学数据军民共享渠道”的精神,依据相关汇交标准规范的有关要求,现面向第二次青藏高原综合科学考察研究项目建立本规范。 本规范主要起草单位:中国科学院地理科学与资源研究所。 本规范主要起草人:第二次青藏高原综合科学考察研究任务九项目组。
杨雅萍
日志、影像是野外科考特有的、重要的一手资料,也是科学数据的重要组成部分。为了进一步规范第二次青藏高原综合科学考察研究项目的考察日志、影像资料的收集整理和入库汇交,确保考察日志、影像资料入库的可操作性、条理性、规范性,特制定本技术规范。 本规范规定了考察日志、影像资料收集整理的程序、方法,包括工作准备、野外调查、资料整理等要求,以期能更好的为考察数据资料入库服务。 本规范适用于第二次青藏高原综合科学考察研究项目组织的野外考察调查的日志、影像资料的整理入库,其他野外科考形成的相关资料也可参照本技术规范执行。
杨雅萍
川藏铁路沿线洪水风险评估数据,包括自然指标、危险性、脆弱性和风险评估数据。数据来源:从地球大数据科学工程网站获取;根据USGS下载的DEM计算获取。加工方法:五年一遇最大24h降水通过根据评估区域内逐年最大24h降水序列进行频率计算获得;河网指数根据评估区域内海河版六级水网裁剪并处理获得;危险性将五年一遇最大24h降水和河网指数赋值计算获取;脆弱性将人口密度、交通造价、GDP总量数据赋权计算获得;风险数据根据危险性和脆弱性赋权计算获得。制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。
王中根
1)将广域而复杂的地理空间区域,甚至一个完整的流域自动划分为可重复、地貌学上具有一致性的地形单元,这项工作仍然停留在理论概念阶段,在实际操作中存在巨大的挑战。地形单元是地形地貌的进一步细分,能够保证斜坡单元内部地貌特征具有最大均一性和不同单元之间的最大异质性,适用于地貌或水文建模、遥感图像中的滑坡检测、滑坡敏感性分析和地质灾害风险评价。2)斜坡单元是重要的地形单元类型,斜坡单元定义为分水线和汇水线围成的区域,而实际上分水线和汇水线围成的区域往往为多个斜坡甚至一个小流域。理论上,每个斜坡单元需要确保内部最大均质性和不同单元之间的最大异质性,斜坡单元是一块与邻近区域具有明显不同地形特征的区域,这些地形特征差异可以依据汇水或排水分界线、坡度和坡向等特征,例如山脊线、山谷线、台地边界、谷底边界等地貌分界线。依据高精度数字高程模型,可以手动绘制规模和质量适宜的斜坡单元,但是手动绘制的方法既费时又容易出错,划分的斜坡单元质量依赖于专家的主观经验,适用于小范围区域,不具有广域、普遍应用价值。我们针对该领域在实际操作中的空白,提出了一个创新的建模软件系统,实现斜坡单元的最佳划分。3)基于汇流分析和坡向分割的斜坡单元自动划分系统V1.0,基于Python编程语言编写,作为GRASS GIS内插模块进行运行和计算,在给定数字高程数据和一组预先定义的参数实现斜坡单元的自动划分。4)基于 Python编程语言,代码具有灵活可变性,适用于具有不同专业知识的科学人员进行大范围的自定义和个性化定制。此外,该软件能够提供高质量的斜坡单元划分结果,反映区域主要地貌特征,为精细化滑坡灾害评价和预报提供基于的评价单元。可服务于地区土地利用规划,灾害风险评价与管理,极端诱发事件(地震或降雨等)下的灾害应急,以及对滑坡监测设备的遴选和预警网络的合理有效布置和运行具有重大的现实指导意义,在滑坡发育严重的地区都可以推广应用。
杨仲康
1)在山区,由于复杂的地形地质背景条件,在降雨、融雪、地震和人类工程活动等外界因子触发下,极易发生滑坡,导致生命财产损失和自然环境的破坏。为了满足工程场地建设的安全性、土地利用规划的合理性和灾害减缓的迫切性需求,需要展开区域滑坡敏感性评价。当利用多种不同的方法得到多个不同评价结果时,如何有效的将这些结果进行组合以得到最优的预测是当前仍未很难解决的一个技术难题,在确定某个区域滑坡敏感性评价的最优策略和最佳方法的操作执行方面仍然十分欠缺。2)利用传统经典的多元分类技术,通过对模型结果评估和误差量化,将最优评价模型进行组合,快速实现区域滑坡敏感性高质量评价。源代码基于R语言软件平台编写,用户需要单独准备一个本地文件夹,用来读取和储存软件运行结果,用户需要记住文件夹储存路径并在软件源代码中进行相应的设置。3)源代码设计了两种不同的模式来展示模型运行结果,以文本和图形格式的标准格式分析结果输出和需要空间数据并以标准地理格式展示的地理空间模式,4)适用于所有对滑坡风险评价工作感兴趣的人群。该软件能够为大专院校经验丰富的科研人员高效使用,也可以被国土环境规划、管理领域的政府人员和公益组织方便快捷、正确可靠的获取滑坡敏感性分级结果。可服务于地区土地利用规划,灾害风险评价与管理,极端诱发事件(地震或降雨等)下的灾害应急,以及对滑坡监测设备的遴选和预警网络的合理有效布置和运行具有重大的现实指导意义,在滑坡发育严重的地区都可以推广应用
杨仲康
滑坡排水防渗是青藏高原滑坡源区治理常用技术。现有的虹吸排水技术应用到高海拔地区效率低下,通过改进,提出了变管径高扬程虹吸排水技术,解决高海拔低气压地区滑坡深部排水问题。开展12组变管径虹吸排水试验来验证理论流速计算公式的正确性,试验结果表明:虹吸流速理论计算结果与试验结果吻合良好,理论计算的相对误差在5%以内;不同的变管径方案使得虹吸流速提升15%-116%,可见变管径可显著增强虹吸管的排水能力,尤其是对于高扬程虹吸管。
郑俊
滑坡排水防渗是青藏高原滑坡源区治理常用技术。对现有的虹吸排水流速公式计算进行了改进,通过试验验证修正的流速公式的正确性。试验结果表明:(1)现有的虹吸计算公式仅适用于低扬程虹吸排水流速计算,对于高扬程虹吸排水流速计算误差较大,相对误差最大超过90%;(2)修正后的虹吸计算公式适用于各种扬程的虹吸排水系统,理论计算结果与试验结果吻合良好,理论计算的相对一般误差在20%以内;(3)因此,推荐使用提出的虹吸排水流速计算的修正公式。
郑俊
滑坡排水防渗是青藏高原滑坡源区治理常用技术。对现有的虹吸排水流速公式计算进行了改进,通过试验验证修正的流速公式的正确性。试验结果表明:(1)现有的虹吸计算公式仅适用于低扬程虹吸排水流速计算,对于高扬程虹吸排水流速计算误差较大,相对误差最大超过90%;(2)修正后的虹吸计算公式适用于各种扬程的虹吸排水系统,理论计算结果与试验结果吻合良好,理论计算的相对一般误差在20%以内;(3)因此,推荐使用提出的虹吸排水流速计算的修正公式。
郑俊
1)近年来随着全球气候的变化,再加上内动力扰动、构造隆升强烈,致使青藏高原地区山地灾害和洪涝灾害频繁发生,给地处山地地区的农村聚落带来极大威胁,村落灾害脆弱性和综合风险防范能力逐步成为乡村防灾减灾的一个重要议题。2)本数据来自2021年6月-9月期间在林芝市朗县朗镇拖麦村、巴宜区林芝镇帮纳村、波密县古乡雪瓦卡村、墨脱县背崩乡背崩村、察隅县竹瓦根镇学尼村、昌都市八宿县然乌镇然乌村、八宿县白玛镇珠巴村进行随机问卷调查,且被访人员主要以熟悉家庭情况的成年人为主。3)问卷设计以科学性、适用性、可行性、典型性、具体性为原则,面向青藏高原喜马拉雅山周边村落个体设计了《青藏高原居民灾害风险防范能力及社会脆弱性调查问卷》。为了确保调查问卷设计内容的信度和效度,正式调查之前对问卷进行了预调查,进一步修改完善调查问卷存在问题。在问卷调查正式开始之前对调查人员进行了调查问卷内容的讲解和调查技能培训。4)调查共完成问卷231份,分别为拖麦村35份、帮纳村24份、雪瓦卡村21份、背崩村38份、学尼村16份、然乌村72份和珠巴村25份,问卷有效率为98.6%。
周强, 陈睿山, 刘峰贵, 李万志, 李生梅, 陈琼, 高海辛
滑坡排水防渗是青藏高原滑坡源区治理常用技术。现有的虹吸排水技术应用到高海拔地区效率低下,通过改进,提出了变管径高扬程虹吸排水技术,解决高海拔低气压地区滑坡深部排水问题。开展12组变管径虹吸排水试验来验证理论流速计算公式的正确性,试验结果表明:虹吸流速理论计算结果与试验结果吻合良好,理论计算的相对误差误差在5%以内;不同的变管径方案使得虹吸流速提升15%-116%,可见变管径可显著增强虹吸管的排水能力,尤其是对于高扬程虹吸管。
郑俊
1)数据内容:本数据集为青藏高原东南三江流域滑坡灾害数据;2)数据来源及加工方法:本数据集系北京工业大学戴福初利用谷歌地球独立解译完成;采用遥感解译-现场验证-再解译-再验证等方法,经过7次系统解译最终形成本数据文件,累计对超过5000处滑坡开展了现场验证,具有较高的精度;4)本数据对青藏高原东南三江流域水能资源开发、交通工程建设、地质灾害评价等方面具有广阔的应用前景。
戴福初
本数据采用由滑坡崩塌灾害致灾因子、滑坡崩塌易发性模型,暴露人口和人口伤亡率四大模块共同构成的喜马拉雅山周边及亚洲水塔区多灾种人口综合风险评估模型。致灾因子模块包括DEM、坡度、降雨、气温、积雪覆盖度、GDP、植被覆盖度因素。滑坡灾害崩塌易发性模型是利用logistic回归模型进行统计分析,得到滑坡崩塌灾害易发概率值。人口暴露度模块是利用滑坡崩塌灾害易发性值与人口数据叠乘。人口伤亡率模块是基于滑坡崩塌灾害历史伤亡人口与同时期滑坡崩塌灾害暴露人口的比值得到。最后,代入2020年人口数据,计算滑坡崩塌灾害易发性不同等级下的暴露人口,并与历史时期滑坡崩塌灾害人口伤亡率相乘,评估2020年喜马拉雅山周边及亚洲水塔区多灾种人口综合风险。
王瑛
数据内容:细料坝溃决流量变化数据 数据来源:本次试验数据来自于水科院溃决模型试验。 采集地点和方式:中国水利水电科学院。通过物理模型试验采集、监测各项数据。 数据质量描述:本次试验目的为模拟坝体透水管涌溃坝,对溃决全过程进行监测,分析溃决发生及发展过程。本次试验的溃坝模式为坝体透水管涌溃坝,初始管涌位置位于坝体左侧中部位置,发生管涌时模型库内蓄水高度为4.6m,水面距坝顶0.4m。可将溃坝过程分为7个阶段。
谢定松
数据内容:不同干密度土料的渗透及渗透稳定试验数据,确定渗透性及破坏水力比降(渗透稳定性)。 数据来源:通过管涌型土料在不同干密度下的渗透与渗透稳定试验,数据内容包括渗流量、水头、时间。 采集地点和方式:中国水科院渗流试验室。根据级配及制样厚度试验干密度,进行渗透稳定试验。 采集时间:2020.8.1-2020.8.20 数据质量描述:本次试验数据均来自于各个测压管、渗压计、秒表、量筒,各仪器每年均送检。
谢定松
数据内容:不同细颗粒量土料的渗透及渗透稳定试验数据,确定渗透性及破坏水力比降(渗透稳定性)。 数据来源:通过管涌型土料在不同级配下的渗透与渗透稳定试验获取数据,数据内容包括渗流量、水头、时间。 采集地点和方式:中国水科院渗流试验室。根据级配及试验干密度,进行不同细颗粒量土料的渗透稳定试验。 采集时间:2020.8.1-2020.8.20 数据质量描述:本次试验数据均来自于各个测压管、渗压计、秒表、量筒,各仪器每年均送检。
谢定松
数据内容:竹巴笼大桥桥梁损毁计算数据 数据来源:基于建立的洪水演进模型进行计算。 采集方式:通过实地考察、文献检索以及数值模型模拟综合进行分析。 数据质量描述:通过构建二维溃坝洪水演进计算模型对“11.03”金沙江白格堰塞湖溃坝后的洪水演进过程进行模拟,并以金沙江下游的竹巴笼大桥为研究对象,基于结构抗力和山洪破坏力之间的平衡关系,对桥梁的损毁过程进行探究,阐明了洪水演进过程中竹巴笼大桥的损毁过程,并得到了估算桥梁致灾水位的计算公式。
张新华
数据内容:基于洪水演进模型的白格下游岸坡冲刷计算数据 数据来源:以白格堰塞坝下游225公里的河道范围为研究对象,基于构建的洪水演进模型进行计算。 采集方式:走访调查金沙江竹巴笼段左岸的受灾情况。为与实际考察成果对比分析,故截取金沙江竹巴笼老桥至国道G318线竹巴笼大桥约2km河段,对其洪水淹没及河床演变过程进行分析。 数据质量描述:以金沙江白格堰塞湖坝址下游0-225km长河道为研究区域,采用分段演算方法模拟了溃坝洪水的演进过程,通过不同河段水文站的实测水文数据,率定了相应河段的糙率系数,并得到了各河段的洪水演进过程。在此基础上,截取金沙江竹巴笼老桥至国道G318线竹巴笼大桥约2km河段,对其洪水淹没及河床演变过程进行分析,并以巴楚河汇口至竹巴笼河段的受损公路及房屋淘刷侵蚀为例进行了分析计算并验证。
张新华
数据内容:以白格为例、基于溃决机理建立的堰塞坝漫顶溃坝数值模型计算数据 数据来源:基于Visual Studio Code平台构建的数值模型。 采集方式:基于白格堰塞坝基本参数,通过建立的模型进行计算。 数据质量描述:首先基于前人已提出的溃坝模型进行对比分析,再依据实际的白格溃决过程,将白格溃坝数值模型需要的输入参数代入进行计算,得到白格堰塞坝的溃决模拟过程,并将模拟结果与实际过程对比分析以进行验证。
张新华
数据内容:不同坡度条件下坝体溃决过程中的基本参数数据 数据来源:通过文献检索,分类合并汇编整理。 数据质量描述:基于蒋先刚关于不同底床坡度坝体溃决的物理模型试验,对坝体溯源侵蚀过程进行分析,以期提出一种溯源侵蚀模式,探究溯源侵蚀过程的影响因子;此外,尝试对每一时刻的溃口下切速率和下游坡脚变化速率进行量化,以期发现二者之间的关系,得到下游坡坡角的计算公式,从而实现对溯源侵蚀的计算,为项目后期的计算分析提供基础。
张新华
数据内容:白格堰塞坝基础资料 数据来源:文献检索、实地调查(白格堰塞坝现场)、机构调研(甘孜水文局、成都勘察设计研究院)相结合。 采集方式:实地调查中使用相机拍摄现场照片;查阅相关机构馆藏资料获取白格堰塞坝基础资料。 数据质量描述:通过机构调研获取了详实的水文数据,包括在甘孜水文局查取巴塘、岗拖水文站以及坝前水位流量变化情况资料。这些资料将对进一步深入分析青藏高原溃决洪水的分析提供重要理论依据和参考。
张新华
数据内容:红石岩、一把刀、小岗剑库容曲线及溃口流量过程线数据 数据来源:通过文献检索,分类合并汇编整理。 数据质量描述:通过文献检索,对四个典型堰塞湖进行了数据汇编,包括:云南鲁甸红石岩堰塞湖、四川德阳市绵竹县小岗剑(上)堰塞湖、四川德阳市绵竹县一把刀堰塞湖。汇编的基本参数包括:坝顶高程、坝高、坝宽等基本参数以及泄流槽参数、堰塞坝级配、库容曲线、溃口流量过程线等参数,并进行了总结分析。可对青藏高原的堰塞湖参数提供参考。
张新华
数据内容:金沙江11.03白格滑坡堰塞湖泄流洪水对下游地区受灾影响考察报告 数据来源:实地调查(路线:巴塘县巴曲河(又称巴楚河)汇口处至梨园水库库区)。 数据质量描述:从受损桥梁、受损乡镇(水文站)和古堰塞湖三方面对金沙江下游地区受灾情况分析。对于受损桥梁,从经纬度、洪痕高程、桥面高程、桥梁类型、冲毁情况等方面进行记录分析;对于受损乡镇、水文站,通过走访调查对河道两岸受损情况进行记录分析;对古堰塞湖,结合实地调查情况以及Google earth地图对古堰塞湖的形成过程进行推导;对于相机拍摄的河滩的卵石和泥沙粒径的级配图,将典型区域内的卵石粒径概化成椭圆状,并提取各不同大小卵石的概化粒径,最后可绘制出卵石粒径级配曲线。
张新华
数据内容:堰塞坝溃口最终底高程经验公式计算数据 数据来源:基于文献检索建立的包含全球1230个堰塞坝案例的大型数据库。 采集方式:通过excel数据处理软件进行处理及拟合。 数据质量描述:为了解决堰塞坝溃口最终底高程赋值的问题,基于收集的堰塞坝数据库中的坝高和溃口深数据,结合Briaud于2008年提出的漫顶溃决堤坝坝体侵蚀度分类方法,将堰塞坝分为高、中、低三类侵蚀度,并对不同侵蚀度堰塞坝的坝高及溃口深进行回归分析,拟合出不同侵蚀度堰塞坝溃口深经验公式,进而对堰塞坝溃口最终底高程进行确定。
张新华
数据内容:基于全球1230个堰塞坝案例的大型堰塞坝特征规律统计分析数据 数据来源:基于文献检索建立的包含全球1230个堰塞坝案例的大型数据库。 采集方式:通过excel、origin等数据分析软件及绘图软件对堰塞坝数据库基础特征进行统计分析。 数据质量描述:基于建立的大型堰塞坝数据库,对国内外堰塞坝的分布、诱因、寿命、形态、溃决等特征进行了统计分析。并对一些特征进行了关联性分析,如堰塞坝地质成因和寿命关联性分析、堰塞坝诱发因素和地质成因关联性分析。
张新华
数据内容:包含全球1230个堰塞坝案例的大型数据库 数据来源:通过文献检索,分类合并汇编整理。 数据质量描述:对于历史发生的堰塞坝案例从定性描述和定量描述两方面进行分类整理。定性描述包括国家、堰塞坝名称、形成时间、滑坡类型、诱发因素、坝体类型、溃决机理等;定量描述包括滑坡方量、堰塞坝方量、坝高、坝长、坝宽、堰塞湖长、堰塞湖容积、堰塞坝寿命、溃口深度、溃口顶宽、溃口底宽、溃决时间、洪峰流量、伤亡人数等。
张新华
数据内容:本数据以2018年白格滑坡为例,进行了典型滑坡堵江数值模拟 数据来源:本次数值模拟数据来自于计算机软件(运用中科院山地所开发的Massflow)采集并记录。 数据质量描述:数据主要为图像jpg及视频gif文件,通过视频剪辑、图像处理软件进行处理。 数据应用成果:以最新的堵江滑坡为案例进行典型滑坡堵江数值模拟,将对类似地层和坡体结构发育而来的深切河谷区域的堵江滑坡灾害效应评估提供理论依据。
徐奴文
数据内容:本数据为运用开源代码ESyS-Particle进行的碎屑流与梳子坝相互作用的模拟数据。 数据来源:本次数值模拟数据来自于计算机软件(运用开源代码ESyS-Particle)采集并记录。 数据质量描述:数据主要为图像文件,通过视频剪辑、图像处理软件进行处理。 数据应用:揭示了碎屑流冲击梳子坝的四个基本相互作用阶段:初始冲击阶段、抬升阶段、堆积阶段和沉积阶段,分析了不同相对柱间距的梳子坝对不同形状颗粒的拦截效率。
徐奴文
数据内容:本数据包含以2018年白格滑坡为例,进行的碎屑流沿斜坡向下运移堆积过程的模拟数据。 数据来源:本次数值模拟数据来自于计算机软件(运用开源代码ESyS-Particle)采集并记录。 数据质量描述:数据主要为图像及视频gif文件,通过视频剪辑、图像处理软件进行处理。 数据应用成果:以最新的堵江滑坡为案例进行碎屑流沿斜坡向下运移堆积过程的模拟,将对类似地层和坡体结构发育而来的滑坡灾害效应评估提供理论依据。
徐奴文
数据内容:堰塞坝溃决水位、流速监测及弗劳德数与流量过程分析数据。 数据来源:数据采集地点为四川。主要在四川大学、成都市儒仪仪器有限公司完成实验分析。使用的仪器包括高速摄像机、波高仪、电子测压管、压力传感器、机械计时器等。采集时间为2021年。 采集方式:通过多部高速摄像机、波高仪、总水头压力传感器、机械计时器等仪器观测野外大比尺堰塞坝溃决试验过程。 数据质量描述:在野外试验中布置相关传感器,并进行实时过程动态观测,共观测了6个大比尺试验工况,包括400个点位的水位及流速观测,进而通过流速与水位计算弗劳德数及流量过程并分析。
牛志攀
数据内容:堰塞坝溃决渗透浸润线坐标监测及渗透浸润程度分析数据。 数据来源:数据采集地点为四川。主要在四川大学、成都市儒仪仪器有限公司完成实验分析。使用的仪器包括高速摄像机、波高仪、电子测压管、压力传感器、机械计时器等。采集时间为2021年。 采集方式:针对室内试验,通过电子测压管、压力传感器、高速摄像机观测堰塞坝溃坝过程中渗透发展演进过程。 数据质量描述:执行不同结构堰塞坝稳定性模型试验在室内试验开展,按照14个工况要求级配将堰塞坝体堆筑在水槽底板上,多部摄像机布置观测,清水流入水槽冲刷堰塞坝直至溃坝结束过程中,观测浸润过程坐标,记录过程中浸润坐标随时间变化过程。
牛志攀
数据内容:三江流域堵江滑坡空间分布、发育机理以及点数据库 采集方案:首先开展GoogleEarth遥感解译,然后进行野外现场验证,结合现场验证完善解译标志后再进行详细解译,并采集包括滑坡源区、运动区、堆积区在内的规模和各项地貌数据,然后再针对堵江滑坡典型案例进行研究分析,揭示三江流域堵江滑坡工程地质分类和成因机制。 采集地点:青藏高原三江地区、四川大学 采集时间:2018.10.01-2021.10.31
邓建辉, 赵思远
1) 数据内容包括:典型高速远程滑坡滑源区岩体结构面高速摩擦试验数据、高速远程滑坡滑体碎裂化物理模拟试验数据、典型滑坡流通区滑带高速环剪试验数据、滑坡堆积区细颗粒迁移及反序物理模拟试验数据、高速远程滑坡数值模拟系统及测评数据。 2)数据来源与加工方法:试验数据采集。 3)数据质量描述:较好-一般。 4)数据应用成果及前景:可用于研究青藏高原地区高速远程岩质滑坡启动、运动和堆积机制,模拟滑坡运动全过程。
文宝萍
该数据集的评价区域为青藏高原地区。该数据集以地质灾害危险性、地震危险性、洪水危险性和冻融危险性空间分布数据集为基础,分别赋予0.25、0.4、0.15和0.05的权重,将灾害危险性分为5级,分别代表极低、低、中、高、极高危险性等级,最终得到了青藏高原多灾种灾害危险性评价结果。 青藏高原多灾种灾害危险性数据利用考察调查数据和公开数据,在ArcGIS中将各单灾种危险性数据进行加权分析,得到青藏高原多灾种灾害危险性数据。
刘连友
该数据集使用了( Ye et al. 2019)构建的青藏高原牲畜多灾种风险评估模型,对因冬季雪灾、大风、低温、高海拔缺氧以及夏季干旱等多个灾种对牲畜的综合叠加影响造成的牲畜死亡开展模型模拟,评估年期望死亡数。该数据可以提供喜马拉雅山周边及亚洲水塔区多灾种牲畜死亡风险信息。数据来源于中国气象科学数据共享服务系统CN05.1、国家青藏高原数据中心青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)、MOD13Q1.006植被指数数据、SRTM 1 Arc-Second Global高程数据。
叶涛
本数据组合了地震和地质灾害的直接经济损失风险评估结果,按所得损失评估结果大小将研究区按风险等级划分为九类,分别为地震地质低风险区,地质中地震低风险区,地震中地质低风险区,地震地质中风险区,地质高地震中风险区,地震高地质低风险区,地质高地震低风险区,地震高地质低风险区以及地震地质高风险区。本次多灾种直接经济损失风险评估的数据结果为亚洲水塔区和喜马拉雅山周边地区未来直接经济损失在空间上的分布提供了依据。
吴吉东
本数据包括1971-2021年青藏高原亚洲水塔区域和喜马拉雅山区域的地震数据,主要属性有地震发生时间(UTC),经度,纬度,地震深度,震级,震级类型和发生区域,分为shp文件和表格数据,可以更加方便相关人员的使用。本数据可帮助相关人员了解青藏高原地震分布情况,判读地震发生位置和相关构造带之间的关系。本数据来源于https://earthquake.usgs.gov/data/pager/,通过选择初始目标区域和时间进行下载,利用ArcGIS工具进行进行导出,根据青藏高原科考区域编辑文件进行筛选,进行制作。
刘吉夫
本洪水危险性等级数据集是基于最近邻河道相对高度模型划定了洪泛区,建立了研究区洪泛区的洪水危险性等级空间分布。将研究区的洪水危险性分为1-5个等级,其中5代表极高的危险性,4代表高危险性,3代表中危险性,2代表低危险性,1代表极低的危险性。研究表明,HAND相对于经典的DEM能够补充提供局地地形信息,更有利于建立局地地形与水文响应之间的关系,基于HAND的洪水危险性等级结果具有合理性,可为洪水风险管理提供参考。
陈波
冻融灾害是由冻土热学力学稳定性变化引起的冻胀和融沉,以及由此引起的地质灾害,如冻胀丘、冰锥、热融滑塌、热融沉陷、融冻泥流等。为揭示喜马拉雅山周边与亚洲水塔区冻融灾害的区域危险性特征,开展喜马拉雅山周边及亚洲水塔区冻融灾害的致灾因子危险性评价意义十分重要。冻融灾害致灾因子的危险性评价主要以评价区的气候、地理、环境等要素为主,同时考虑区内地质条件作为本次危险性评价的主要因子,进行致灾因子危险性分级评价。
张国明
本数据集整理和收集了各类地质灾害点位、地形起伏度、等滑坡、高程、土地利用等影响因子,分辨率为90米,利用以上因子图层以及样本数据,用随机森林得出危险性等级图。 数据集/图集产生的方式主要包括:原始数据(考察调查、收集购置等),加工处理数据(计算模拟)。部分数据源来自开源网站下载,精度为90米,利用自己的随机森林代码在SPIDER进行计算训练集80%,测试集20%。使用可以运行ARCGIS的电脑打开。
杨文涛
泛第三极20国坡度坡长因子(LS)数据集,基于公开的1弧秒分辨率SRTM数字高程数据(Shuttle Radar Topography Mission, SRTM;http://srtm.csi.cgiar.org),经过去接边、去除伪条纹等和滤波除噪等预处理,利用CSLE模型中的坡度坡长因子算法和本项目研发的坡度坡长因子计算工具(LS_Tool),计算得到7.5弧秒分辨率坡度坡长因子图。泛第三极20国坡度坡长因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时分析泛第三极20国侵蚀地形特征(如高程、坡度、坡度等宏观分布和微观格局)的基础数据,对于该地区地貌特征、地质灾害特征的分析,也具有参考价值。
杨勤科
1)数据内容包含重点区域20国植被覆盖与生物措施因子B栅格数据,空间分辨率为300米。2)基础数据源为2014~2016年的MODIS MOD13Q1产品,空间分辨率250m,据此计算得到3年平均的24个半月植被覆盖度栅格数据,然后按地类计算土壤流失比例,进一步利用24个半月的降雨侵蚀力进行加权平均,得到植被覆盖与生物措施B因子栅格图。3)MOD13Q1遥感植被数据侧重进行了去云预处理,计算的B因子按地类进行统计并进行合理性分析,最终取得的数据质量良好。4)植被覆盖与生物措施B因子反映了地表土地利用/植被覆盖对土壤侵蚀的影响,对重点区域20国的土壤侵蚀模拟及其空间格局分析具有重要意义。
章文波
1)数据内容为重点区域20国30年(1986-2015)平均降雨侵蚀力R栅格数据,空间分辨率为300米。2)采用Climate Prediction Center (CPC)发布的基于全球站点数据生成的0.5°×0.5°网格日降雨数据计算重点区域20国降雨侵蚀力R因子。3)采用中国气象局全国2358个气象站1986-2015年日降雨数据计算R值,对采用CPC数据源计算的R值进行复核校验,发现CPC数据计算的R值系统偏低,并对CPC数据计算的R值结果进行修订,最终取得的数据质量良好。4)降雨侵蚀力R因子作为CSLE模型的动力因子,其数据对重点区域20国土壤侵蚀的模拟及其空间格局分析等具有重要意义。
章文波
按照雅安-昌都,昌都-林芝,林芝-拉萨等分区段,分组分段对川藏铁路新线、川藏公路沿线10km范围内泥石流开展野外调查,填写泥石流调查表,拍摄照片。基于调查的泥石流数据,为川藏交通廊道孕灾背景特征和分布规律提供基础数据,同时该数据详细调查了泥石流危害方式和对公路、铁路等交通线路的危害方式;进而在区域尺度、重点路段和典型灾害等不同尺度,沿川藏铁路新线开展泥石流为危险性、易损性和风险评估,为川藏铁路的选线提供支撑。
陈华勇, 杨东旭, 柳金峰, 陈兴长
川藏交通廊道泥石流分布数据包含两个图层,一个为点图层,主要标注泥石流沟口位置,另外一个为面状图层,为泥石流沟的流域范围。该数据的来源为遥感判识和地面调查的方法相结合,首先使用遥感影像对区域的泥石流沟位置进行解译,进而沿着川藏铁路和川藏公路等交通干线进行泥石流沟的地面调查,对遥感解译的数据进行校验,最终获取较为可靠的泥石流分布数据。该数据可以用于川藏交通廊道泥石流分布规律分析、多尺度泥石流危险性评估和风险评估。
陈华勇, 柳金峰, 杨东旭, 陈兴长
作为中国西部山区的典型代表,横断山区成为地质灾害频发且危害最为严重的区域之一,给地处山地地区的农村聚落带来极大威胁,村落灾害脆弱性和综合风险防范能力逐步成为乡村防灾减灾的一个重要议题。本数据来自2020年8月-9月期间在四川省小金县美兴镇下马厂村和冕宁县回坪乡大石板村、云南省永胜县期纳镇期纳村进行随机问卷调查,且被访人员主要以熟悉家庭情况的成年人为主。问卷设计以科学性、适用性、可行性、典型性、具体性为原则,面向横断山区村落个体设计了《横断山区村落灾害风险防范能力及社会脆弱性调查问卷》。为了确保调查问卷设计内容的信度和效度,正式调查之前对问卷进行了预调查,进一步修改完善调查问卷存在问题。在问卷调查正式开始之前对调查人员进行了调查问卷内容的讲解和调查技能培训。调查共完成问卷171份,剔除无效问卷20份,得到有效问卷151份,分别为下马厂村50份,大石板村39份和期纳村62份,问卷有效率为88.3%。
周强, 张强, 刘峰贵, 孙鹏, 陈琼, 赵富昌, 支泽民
1)数据内容:①巨型NPR锚索室内静力拉伸视频、红外监测视频及静力拉伸分析数据图;②巨型NPR锚索室内动力冲击视频;2)数据来源:通过对室内巨型NPR锚索静力拉伸过程、红外监测和动力冲击过程进行录像,并将静力拉伸数据导入Origin软件中进行数据处理和分析;4)通过对巨型NPR锚索进行室内静力拉伸和动力冲击实验,获取巨型NPR锚索超常力学特性,可为断裂带边坡灾害防治及预警监测、跨断层隧道防治提供支撑材料。
陶志刚
本数据集在文献资料和卫星影像识别的基础上,对川藏铁路、川藏交通廊道、金沙江上游区域进行了较为详细的实地野外科学考察,将观察到的泥石流灾害链、滑坡灾害链、断裂构造典型点、冰川泥石流灾害链、大规模崩塌灾害链等进行编目和详细拍照记录;填写野外科考灾害点调查数据表格,整理并填写科考日志文件,完成各种类型灾害点的分布图。照片清晰、灾害调查表内容详实、科考日志填写完整。该野外调查照片与数据,对今后灾害链的野外调查及其未来发展趋势的对比研究具有重要参考意义。
邓宏艳, 王姣, 王玉峰
横断山区地处四川盆地西部、云贵高原西北部和青藏高原东部,川藏铁路横跨14条大江大河、21座4000米以上的雪山,区内地质构造复杂、板块活动强烈、地貌形态多样、岩层风化破碎、重大工程扰动、气候变化等诸多因素影响,使得这一区域地震、泥石流、崩塌、滑坡、冰湖溃决、山洪、雪灾和干旱等多种灾害高发、频发,表现出明显的时空延拓性,灾害周期短、强度大、波及范围广。本数据集是我们在上述地区进行第二次青藏高原科学考察的无人机遥感影像及现场照片的集合,对支撑青藏高原防灾减灾、工程安全防护与区域发展战略需求有着重要意义。
张强, 周强, 吴文欢, 赵佳琪, 袁茹玥
基于中国地面逐日气象要素数据集、全国地理基础数据、人口普查数据以及30m分辨率的DEM数据、统计年鉴数据、历史灾害数据及其他相关数据,结合暴雨、洪涝、高温、雪灾、崩塌、滑坡灾害,运用主成分分析法、随机森林等多种方法计算灾害的危险性与脆弱性指标,在此基础上,构建综合灾害风险指数,并进行归一化处理。其中,横断山区考虑上述所有灾害类型,川藏铁路考虑洪涝、雪灾、崩塌、滑坡灾害。数据集包括横断山区(川藏铁路)的自然灾害危险性评图、脆弱性评价图和综合风险评价图。
张强, 周强, 吴文欢, 赵佳琪, 袁茹玥
本数据包含青藏高原地质地理环境与灾害风险科学考察数据资源建设规范和元数据规范两个标准规范。根据《中共中央办公厅、国务院办公厅关于加强信息资源开发利用的若干意见》、《中华人民共和国档案法》、《科学数据管理办法》、《科技基础条件平台建设纲要》等相关规定,结合任务九科学考察内容成果特征,特制定第二次青藏高原综合科学考察研究任务九的元数据内容标准框架、资源建设规范,方便科考数据的汇总与共享,实现简单高效管理复杂的项目成果数据,同时更好的保护数据资源生产者的知识产权等。保证各课题数据的规范化与标准化,以期更好服务于项目本身。
杨雅萍
数据集包含川藏铁路沿线泥流阶地分布数据与川藏铁路沿线碎屑散粒体分布数据,川藏铁路沿线泥流阶地分布数据基于近几年我国高分二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出的川藏沿线冻融泥流阶地分布图。最大单块泥流阶地1030043 m2,位于康定市境内,距离川藏铁路新都桥站约12km,最小单块泥流阶地1102 m2,位于乃东区境内,距离川藏铁路甲村站约3.3km,沿线泥流阶地平均面积为45013 m2,沿线泥流阶地主要分布在康定市、察雅县以及桑日县境内。 川藏铁路沿线碎屑散粒体分布数据基于研究区高分二号遥感影像资料,解译了川藏铁路理塘至林芝区间段广泛发育的斜坡散粒体,斜坡散粒体将其根据流动特征和结构模式,划分为活动型和原位风化型。目前该研究区共识别出斜坡散粒体病害2308条,覆盖面积达1283.21km2,平均面积0.56km2,最小上图面积为600m2,集中分布在海拔3700m~5500m之间,平均海拔为4767.78m。研究区范围内的斜坡散粒体约95%的单块斜坡散粒体面积小于2.0×104m2,平均面积在55.5×104m2,面积最大单块斜坡散粒体面积为9148×104m2;斜坡散粒体主要分布在高程值4500-5400m之间,占总斜坡散粒体块数的87.9%,其中高程值在5000-5400m的斜坡散粒体块数占为47.7%,平均高程值为4945m,海拔最低的单块斜坡散粒体其高程值为3241m;研究区范围内的斜坡散粒体坡度值主要介于30-70°之间之间,占总斜坡散粒体块数的89.5%。该数据集制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。为冻融泥流发育规律和古气候研究提与川藏工程走廊斜坡散粒体地理分布特点提供了研究基础。
江利明, 黄荣刚, 王慧妮
该数据集主要内容为G317和G318国道沿线边坡及路面工程病害调查数据集,通过现场调查获得,调查时间为2020年1月9日-1月19日,2020年8月10日至2020年9月2日。调查对象为川藏北线G317(那曲-甘孜)和川藏南线G318(拉萨-新都桥)。调查的病害类型主要包括冻融诱发的边坡病害及灾害(落石、危岩体及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及冬季的涎流冰病害。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解川藏工程走廊主要公路工程冻融病害情况及相关研究提供依据。
牛富俊
经过整理的有文献资料的和卫星影像上能观察到的泥石流-堰塞湖-溃决洪水灾害链编目数据与分布图。在数据中泥石流被分为一般泥石流与冰川泥石流两种类型,发生时间从1953年到2019年不等。该数据主要通过文献资料调查结合遥感判识确定灾害链发生的位置、类型等信息,再整理成表格与生成矢量数据。数据由调查文献资料与遥感目视解译生成。由于无法判断许多灾害的确切发生时间,因此难以评价数据的完整性。灾害点编号为野外科考区域代码+河流流域名称首字母代码+灾害链类型代码+四位顺序数字编号。详见Excel数据文件。
周丽琴, 唐晨晓
该数据集记录了青海省火灾事故统计1998-2010年的统计数据,数据按行业、区域、隶属关系和注册类型等划分的。数据整理自青海省统计局发布的青海省统计年鉴。数据集包含13个数据表,分别为: 火灾事故2001年.xls 火灾事故2006年.XLS 火灾事故2007年.XLS 火灾事故2008年.XLS 火灾事故2009年.xls 火灾事故2010年.XLS 火灾事故1998年.xls 火灾事故1999年.xls 火灾事故2000年.xls 火灾事故2002年.xls 火灾事故2004年.xls 火灾事故2006年.xls 火灾事故2003.xls 数据表结构相同。例如火灾事故2001年数据表共有6个字段: 字段1:类别 字段2:火灾起数起 字段3:死亡人数人 字段4:受伤人数人 字段5:损失折款万元 字段6:火灾原因起
青海省统计局
本数据目标是围绕“一带一路”沿线关键节点区域气候变化相关环境问题,选择34个关键节点(重要城市,重大工程、港口和工业园区)区域的极端干旱气候事件,开展极端干旱的风险评估,支撑绿色“一带一路”建设空间路线图的研究,服务于绿色“一带一路”建设。对于各个节点的干旱灾害风险评估的危险性,致灾因子的危险性(hazard)是指造成干旱灾害的主要气象因子的变化特征和异常程度,例如天然降水量的异常减少、蒸发量增大或气温的异常偏高等。一般认为干旱灾害风险随着致灾因子危险性的增大而增大。利用空间化的卫星和再分析气温、降水和土壤有效含水量数据计算了关键节点区域的帕默尔干旱指数,用来表征各节点极端干旱致灾因子危险性的强弱。可以为我国海外园区、港口和重大工程建设规划、运营管理、环境问题应急与防治提供应对干旱灾害的科学依据和对策建议,推进和保障“一带一路”泛第三极地区的区域发展战略的顺利实施。
吴骅, 张丹, 陈报章
本数据目标是围绕“一带一路”沿线关节点区域气候变化相关环境问题,选择34个关键节点(重要城市,重大工程、港口和工业园区)区域的极端干旱气候事件,开展极端干旱的风险评估,支撑绿色“一带一路”建设空间路线图的研究,服务于绿色“一带一路”建设。对于各个节点的干旱灾害风险评估的脆弱性,一方面取决于不同土地覆盖类型对于干旱灾害的敏感性;另一方面,反映生态环境的健康程度,决定地区对于干旱灾害的承受能力、遭受干旱灾害的恢复能力,表现为不同土地覆被类型下的地物在干旱灾害时受到不利影响的倾向。利用“2018丝路环境专项”源数据百米级地表2015年土地覆盖数据,通过因子分析法衡量不同土地覆盖类型的脆弱性特点对土地脆弱性的权重赋值,得到每个节点100m分辨率的极端干旱脆弱性指标,可以为我国海外园区、港口和重大工程建设规划、运营管理、环境问题应急与防治提供应对干旱灾害的科学依据和对策建议,推进和保障“一带一路”泛第三极地区的区域发展战略的顺利实施。
吴骅, 张丹, 陈报章
该数据集为2015年孟加拉国达卡市高温热浪风险数据集,空间分辨率为30m,时间分辨率为年。高温热浪风险是指高温热危险性(未来可能发生的高温热浪事件)、高温热浪暴露度(可能发生高温热浪事件地区的总人口、生计和资产)和高温热浪脆弱性(当受到高温热浪事件影响时,承灾体遭受不利影响的倾向)之间相互作用而产生有害后果的概率或损失的可能性。高温热浪风险评估采用“危险性-暴露度-脆弱性”评估方法。数据集经过了专家研讨论证,可以为区域高温热浪风险评估提供支撑。
杨飞, 殷聪
该数据集为2015年孟加拉国达卡市高温热浪危险性、暴露度和脆弱性数据集,空间分辨率为30m,时间分辨率为年。高温热浪危险性是衡量高温热浪事件严重程度的一个指标,用地表温度来表示;高温热浪暴露度是指人类、生计和经济等可能受到不利影响的程度,用夜间灯光数据表示经济暴露度,用人口密度表示人口暴露度,大于65岁和小于5岁的人口构成了弱势群体;高温热浪脆弱性是衡量环境中增加/减少风险的因素,用距离道路/医院和救护站/水体的距离、NDVI和不透水层和贫民窟面积来代表高温热浪脆弱性。数据集经过了专家研讨论证,可以为区域高温热浪风险评估提供支撑。
杨飞, 殷聪
该数据集记录了青海省2011-2018年自然与人为因素造成的灾害损失对比。数据统计自青海省自然资源厅,数据集包含12个数据表,分别为:2011年自然与人为因素造成的灾害损失对比,2012年自然与人为造成的灾害情况,2013年青海省自然与人为因素造成的灾害对比,,2014年青海省自然与人为因素造成的灾害对比……,2018年青海省自然与人为因素造成的灾害对比等,数据表结构相同,包含两个字段: 字段1:灾害成因 字段2:占比 按照人为因素和自然因素分类
青海省自然资源厅
该数据集记录了青海省2011-2018年突发性地质灾害主要分布。数据统计自青海省生态环境厅,数据集包含7个数据表,分别为:2011年突发性地质灾害主要分布,2012年青海省突发性地质灾害主要分布,2014年青海省突发性地质灾害主要分布统计表,2015年青海省突发性地质灾害主要分布统计表,2016年青海省突发性地质灾害主要分布统计表,2017年青海省突发性地质灾害分布表,2018青海省年突发性地质灾害分布表,数据表结构相同。 每个数据表共有5个字段,例如2016年青海省突发性地质灾害主要分布统计表: 字段1:县(市) 字段2:滑坡 字段3:崩塌 字段4:泥石流 字段5:黄土湿陷
青海省生态环境厅
该数据集记录了青海省2011-2018年发性地质灾害造成的直接经济损失对比。数据统计自青海省生态环境厅,数据集包含8个数据表,分别为:2011年突发性地质灾害造成的直接经济损失,2012年青海省突发性地质灾害造成的直接经济损失,2013年青海省突发性地质灾害造成的直接经济损失对比图,2014年青海省地质灾害造成的直接经济损失对比,2015年青海省突发性地质灾害造成的直接经济损失统计表,2016年青海省突发性地质灾害造成的直接经济损失统计,2017年青海省突发性地质灾害造成的直接经济损失对比,2018年青海省突发性地质灾害造成的直接经济损失对比图,数据表结构相同。 每个数据表共有2个字段,例如2013年青海省突发性地质灾害造成的直接经济损失对比图: 字段1:灾害类型 字段2:直接经济损失
青海省生态环境厅
该数据集记录了青海省2011-2016年典型地质灾害发生频次统计。数据统计自青海省生态环境厅,数据集包含6个数据表,分别为:2011年突发性地质灾害发生频次,2012年青海省突发性地质灾害发生频次,2013年青海省突发性地质灾害发生频次对比图,2014年青海省突发性地质灾害发生频次对比,2015年青海省突发性地质灾害发生频次统计表,2016年青海省突发性地质灾害发生频次统计表,数据表结构相同。 每个数据表共有2个字段,例如2011年突发性地质灾害发生频次: 字段1:地点 字段2:频次占比
青海省生态环境厅
该数据集记录了青海省2011-2018年典型地质灾害情况表。数据集包含10个数据表,分别为:2011年典型地质灾害情况表、2012年典型地质灾害情况表、2013年典型地质灾害情况表、2013年典型地质灾害情况表分布表、2014年典型地质灾害情况表、……2018年典型地质灾害情况表,数据表结构相同。 每个数据表共有5个字段,例如2011年典型地质灾害情况表: 字段1:地点 字段2:灾害类型 字段3:发生时间 字段4:规模 字段5:危害及损失
赵虎
该数据集记录了青海省2011-2019年青海省地质环境公报。数据集包含9个pdf数据文件,数据统计自青海省自然资源厅。青海省地质环境公报是为使全社会了解我省的地质环境状况,增强地质灾害防治和地质环境保护意识,保障广大人民群众的生命财产安全,促进经济社会与地质环境的全面协调可持续发展,依据《青海省地质环境保护办法》(青海省人民政府令第72号)第十四条,省自然资源厅根据地质环境调查、监测资料,发布年度地质环境公报,向社会公告我省年度地质环境状况。 青海省地质环境公报主要内容包括:全省地质灾害分布特征、成因、危害程度及防治工作;地下水资源开发利用与动态变化、地下水污染状况;矿山地质环境保护与恢复治理。 青海省地质环境公报由青海省自然资源厅地质勘查管理处、青海省地质环境监测总站共同编制。
青海省自然资源厅
孟中印缅经济走廊区内共解译中大型滑坡428处,其中位于缅甸的滑坡数量最多,达到304处,占滑坡总量的71%,其次为中国和印度,滑坡数量分别为71处和52处,占滑坡总量的17%和12%,孟加拉的滑坡分布较少,仅为1处。按照滑坡体物质组成,可以划分为岩质滑坡的土质滑坡,该区域内岩质滑坡343处,占滑坡总数的80%,土质滑坡为85处,占滑坡总数的20%。其中岩质滑坡主要分布在中国、印度和缅甸的北部,土质滑坡则主要分布与缅甸的中部和南部。孟中印缅走廊内共解译泥石流1569处,其中沟谷型泥石流574条,坡面泥石流995条。研究区的东部地区,泥石流主要分布在澜沧江、怒江、墨江和红河的两岸,沿着这些江河呈南北向分布,而在研究区的中部缅甸地区,泥石流则分布在若开山区。相比沟谷型泥石流,坡面泥石流的规模和危害要小很多,本研究中泥石流的相关分析主要针对沟谷型泥石流。
邹强
中蒙俄经济走廊东起中国途径蒙古西至俄罗斯,横跨蒙古高原、西西伯利亚平原和东欧平原。区内自然环境差异大,地质条件复杂,在区域差异化的构造、地震、气象、水文、生态等的复合驱动作用下,中蒙俄经济走廊滑坡广泛分布。以遥感影像为基础,解译中蒙俄经济走廊滑坡泥石流灾害,统计显示,中蒙俄经济走廊共发育滑坡灾害396处,滑坡灾害面积介于0.0006km²~8.57 km²之间。沿铁路线两边100km范围内的分水岭区域,总面积1.43×106km2研究区内,共确定中蒙俄经济走廊1336条泥石流沟。
邹强
本数据目标是围绕“一带一路”沿线关键节点区域气候变化相关环境问题,选择34个关键节点(重要城市,重大工程、港口和工业园区)区域的极端干旱气候事件,开展极端干旱的风险评估,支撑绿色“一带一路”建设空间路线图的研究,服务于绿色“一带一路”建设。本数据利用极端干旱风险评估指标体系对“一带一路”区域内34个关键节点的极端干旱风险进行了评估,评估结果时间分辨率为月,空间分辨率为300米。为了便于对极端干旱风险指数进行分析,特计算了2014至2015年间逐月的干旱风险指数在每个像元尺度的线性回归方程的斜率,用来表示极端干旱的时间变化特征(大于0表示干旱加剧,小于0表示干旱缓解)。同时,由于是对逐个像元进行时间变化速率计算,因此也能够在区域尺度上反映极端干旱的空间差异性。
吴骅, 张丹, 陈报章
瓜达尔深水港位于巴基斯坦俾路支省西南部瓜德尔城南部,在巴基斯坦靠近伊朗一侧,东距卡拉奇约460km,西距巴基斯坦伊朗边境约120km,南临印度洋的阿拉伯海,向西则是霍尔木兹海峡和红海,与阿曼首都马斯喀特(Muscat)遥遥相对,是一个极具战略地位的海港。 本数据为极端干旱风险评估数据集,从极端干旱危险性、暴露度、脆弱性、稳定性四个方面,利用帕默尔干旱指数、高程、水系、土地利用、人口密度、GDP密度、田间持水量等数据对该区域的极端干旱风险进行了综合评估,数据其空间分辨率为30米,时间为2015年。
吴骅
此数据集以仰光深水港地区极端降水灾害危险性空间分布数据集(2019)和脆弱性空间分布数据集(2019)为基础,结合仰光深水港地区的GDP和人口分布数据,通过“风险=暴露度×脆弱性×危险性”的定义,计算得出了仰光深水港地区极端降水灾害的风险。该数据集可以为当地的防灾减灾工作提供参考,通过分析高风险的分布及成因,可以针对性的提出工程措施或非工程措施,达到减灾防灾的目的,降低极端降水灾害所带来的人民群众生命财产损失。
李毅
该数据集的区域为仰光深水港中心城区。该数据集以极端降水灾害脆弱性空间分布数据集(2019)为基础,参考了其评价指标体系。在评价仰光深水港地区的极端降水灾害脆弱性时,考虑了减灾力和敏感性指标,其中减灾力与脆弱性呈负相关,敏感性与脆弱性呈正相关。减灾力考虑了不透水面的密度、路网密度和救援应急设施的密度;敏感性考虑了当地的土地覆盖类型,包括农田、城镇和道路交错带。当极端降水灾害发生时,高脆弱性的区域会受到更严重的损失,重建的难度更大。
葛咏, 李强子, 李毅
该数据集的评价区域为仰光深水港中心城区。该数据集以极端降水灾害危险性空间分布数据集(2019)为基础,参考了其的评价指标体系。该数据集综合考虑了降水危险性和地形危险性指标。其中降水危险性指标包括极端降水强度指标和极端降水频率指标,这两个指标都从GPM降水数据中统计、提取得到,地形危险性主要考虑了高程指标。最终得到了极端降水灾害危险性评价结果,危险性高的区域,其受到极端降水灾害的可能性和灾害的强度高于危险性低的区域。
葛咏, 李强子, 李毅
本数据目标是围绕“一带一路”沿线关键节点区域气候变化相关环境问题,选择34个关键节点(重要城市,重大工程、港口和工业园区)区域的极端干旱气候事件,开展极端干旱的风险评估,支撑绿色“一带一路”建设空间路线图的研究,服务于绿色“一带一路”建设。本数据将2011-2015年的多期干旱风险的线性回归斜率作为“极端干旱时空变化状态”,得到“一带一路”区域共34个节点1km分辨率的极端干旱变化状态特征,为我国海外园区、港口和重大工程建设规划、运营管理、环境问题应急与防治提供应对干旱灾害的科学依据和对策建议,推进和保障“一带一路”泛第三极地区的区域发展战略的顺利实施。
吴骅, 张丹, 陈报章
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及典型区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以十米网格为评估单元,提取并计算每个单元里与风暴潮灾害危险性相关的指标。基于统计学方法估算每20年、50年和100年一遇的潮位高低。在此基础上,构建风暴潮灾害危险性评估指数,利用加权方法综合上述各指标得到风暴潮危险指数,以此来评价各评估单元风暴潮危险性的高低,并可用于进行风暴潮危险等级评估。数据集包括汉班托塔港口区域的20年一遇、50年一遇和100年一遇的危险性评估结果图。
董文
此数据集以百米级危险性评估数据集和百米级脆弱性评估数据集为基础,以国际上对风险的定义“风险(R)=危险性(H)×脆弱性(V)”,计算获得了“一带一路”关键区域34个节点百米级的风险评估数据集。该数据集评估了“一带一路”重点区域在极端降水事件下的极端降水灾害风险,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。
葛咏, 李强子, 李毅
此数据集以1984-2018年全球地表水数据(WOD)为基础,选取了极端降水频率指标和极端降水强度指标,结合ArcGIS中的空间分析方法,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的危险性等级。34个关键节点百里级危险性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。
葛咏, 李强子, 李毅
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的耕地利用占比,城镇用地占比,交错带占比,路网密度,不透水面占比为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
“一带一路”沿线的34个关键节点区域风暴潮历史事件泛在网络数据是从互联网收集并再加工处理而来的。该数据通过Python程序语言编写网络爬虫,通过调用谷歌和百度搜索引擎根据风暴潮事件的关键词获得网页信息,并对网页信息进行解析,提取事件发生的时间、地点以及事件概况、影响范围、受灾人数、死亡人数、网页地址等核心信息。该数据可用于极端事件中风暴潮的风险评估,从而为“一带一路”沿线关键节点和区域开展风暴潮风险研究提供重要支撑作用。
葛咏, 凌峰
“一带一路”沿线的34个关键节点区域极端降水历史事件泛在网络数据是从互联网收集并再加工处理而来。该数据通过Python程序语言编写网络爬虫,通过调用谷歌和百度搜索引擎根据极端降水事件的关键词获得网页信息,并对网页信息进行解析,提取事件发生的时间、地点以及事件概况、影响范围、受灾人数、死亡人数、网页地址等核心信息。该数据可用于极端事件中极端降水的风险评估,从而为“一带一路”沿线关键节点和区域开展极端降水风险研究提供重要支撑作用。
葛咏, 凌峰
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及一带一路区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以十米网格为评估单元,提取并计算每个单元里与风暴潮灾害危险性、暴露度和脆弱性相关的指标,如节点潮位历史强度、风暴历史到达频次、历史损失、人口密度、土地覆盖类型等指标。在此基础上,构建风暴潮灾害风险综合指数,利用加权方法综合上述各指标得到风暴潮风险指数。最后对风暴潮风险指数进行归一化处理,得到0-1之前的风险指数值,以此来评价各评估单元风暴潮风险的高低,并可用于进行风暴潮风险等级评估。数据集包括20年、50年和100年一遇对应的风险。
董文
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及“一带一路”区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以十米网格为评估单元,提取并计算每个单元里与风暴潮灾害脆弱性相关的指标,如人口密度、GDP值、土地覆盖类型等指标。在此基础上,构建风暴潮灾害脆弱性综合指数,利用加权方法综合上述各指标得到风暴潮脆弱性指数。最后对风暴潮风险指数进行归一化处理,得到0-1之前的脆弱性指数值,以此来评价各评估单元风暴潮脆弱性的高低。
董文
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
统计局
在过去几十年中,相对于热带气旋(在印度洋称为热带风暴)的路径预报,热带气旋强度的预报能力提高非常有限。 降雨的潜热释放通常认为驱动热带气旋增强非常重要的过程。 很多研究表明热带气旋的降雨和对流特征是影响热带气旋强度变化的非常重要过程,而环境变量相对来说对强度预报的作用非常有限。基于此,提取和热带气旋最佳路径数据500公里范围内匹配的卫星观测降雨和对流(云顶亮温)数据,来研究这些变量和热带气旋强度和强度变化的关系。 首先将不同来源资料进行时空匹配,包括对原始的热带气旋最佳路径数据与卫星降水和对流数据进行了时空匹配,包括位置对应,时间和空间分辨率的匹配,同时采用线性插值将路径中心位置插值到每小时;热带气旋对应的降雨数据基于TRMM卫星观测计算,热带气旋对应的云顶亮温数据基于多源定轨红外卫星计算,然后根据最佳路径空间位置、时间和影响半径(距气旋中心500km),动态提取和计算相关范围内的TRMM卫星降水和多源定轨红外卫星的红外亮温数据,得到台风路径3小时分辨率的降水和对流数据,其中降水空间分辨率0.25°,对流空间分辨率4km。 该数据显示降雨和热带气旋的强度有非常好的线性关系,降雨越大的热带气旋对应的热带气旋的强度越强。但是这不能说明热带气旋增强是由降雨引起的,快速增强的热带气旋和快速减弱的热带气旋对应的降雨都可以很强。热带气旋从快速减弱到快速增强,深对流云(云顶亮温<208 K)的强度和面积都逐步增大,而与热带气旋的强度没有线性的对应关系。这一部分深对流云的变化领先于热带气旋强度24小时变化, 因此可以作为判断热带气旋强度变化非常重要的指标(Ruan and Wu,2018,GRL)。与热带气旋相对应的降雨和对流特征,可以很好的用来研究热带气旋强度以及强度变化。同时,该数据的降雨具有3小时的分辨率,云顶温度具有半小时的分辨率, 可以做日变化尺度上的相关研究。
吴巧燕
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
本数据集为喜马拉雅山地区重大地质灾害统计数据集,研究区西起阿里地区札达县、葛尔县,东侧以雅鲁藏布江为界,北界为雅鲁藏布江大断裂,南至国界的广大喜马拉雅山地区。喜马拉雅山位于我国的西南边陲,青藏高原的西南,是世界上最大、最高、最年轻的山脉,世界第一高峰珠穆朗玛峰就坐落在这里。这里地质构造复杂、地震活动频发,新构造运动强烈,内外动力地质作用异常活跃,是我国地质灾害最严重的地区之一。该数据集原始数据数字化自《喜马拉雅山地区重大地质灾害遥感调查报告》一书,灾害统计总计540余处,包含滑坡、泥石流和冰川终碛湖溃决三种灾害类型。本数据集对于研究西藏喜马拉雅山地区减灾防灾工作提供了基础数据,对于相关领域的研究具有参考价值。
童立强
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。 降水距平百分率是某时段降水量与同期气候平均降水量之差除以同期气候平均降水量的百分比。该数据集以GPM IMERG Final Run(GPM)日值降雨资料为基础,计算对应地区的降水量,采用降水距平百分率等级评价指标,分析了不同等级干旱的分布特征。 数据的区域为泛第三极34个关键节点(阿巴斯、阿斯塔纳、科伦坡、瓜达尔、孟巴、德黑兰、万象等地区)。
吴骅
通过资料整理和数字化,基于ArcGIS平台,构建了西亚地区地震构造图。地震构造图以伊朗地震研究机构的图件为基础,并广泛收集最新的活动断裂研究资料,图件范围包括伊朗及周边国家和地区,图中标绘了发震断层(活动断层)的位置、活动性质和主要的参考文献资料,图中同时给出了1960年至2019年5级以上地震的震中位置。这些图件可用于西亚地区的活动构造和地震灾害研究,为西亚地区的大型工程与基础设施建设提供地震安全保障。
刘志成
泛第三极地区地震活动强烈,其地震活动的动力来源于印度板块、阿拉伯板块与欧亚板块的俯冲碰撞。在泛第三极地区(北纬0-56度,东经43-139度)1960年以来发生M≥5级地震18806次,其中M≥8级地震4次,M=7.0-7.9级地震187次, M=6.0-6.9级地震1625次, M=5.0-5.9级地震16990次。地震主要发生在印度板块与欧亚板块的碰撞边界印缅山脉、喜马拉雅山脉 、苏来曼山脉的山麓地区,以及阿拉伯板块与欧亚板块碰撞的扎格罗斯山脉地区。
王继
通过资料整理和数字化,基于ArcGIS平台,构建了西亚地区地震区划图。地震区划图以伊朗地震研究机构的图件为基础,并广泛收集最新的活动断裂研究资料,图件范围包括伊朗及周边国家和地区,图中标绘了发震断层(活动断层)的位置、活动性质和主要参考文献资料,以及1960年至2019年5级以上地震的震中位置。区划图中以未来50年超越概率10%的地震动加速率峰值(PGA)为指标,进行地震危险性分区。图件可用于西亚地区的活动构造和地震灾害研究,为西亚地区的大型工程与基础设施建设提供地震安全保障。
刘志成
一个具有完整全球海洋覆盖范围的网格化海洋温度数据集是了解气候变化和气候变异性的一个非常有价值的资源。大气物理研究所(iap)通过若干创新步骤,对1990年以来2000米高空的历史海洋地下温度进行了新的客观分析。第一种方法是使用一组更新的过去的观察结果,这些新的观测结果已经被纠正了偏差(例如,在地震中)。XBT偏置校正CH14方案,XBT社区推荐。第二个是在海洋中不同地方的值之间使用协变性和来自包括一个全面海洋模型的若干气候模型的背景信息。第三个是扩大每个观测对较大区域的影响,认识到南大洋广阔开放的广阔空间的相对同质性。然后,这些观测也被用来提供更精细的尺度细节。最后,通过使用最近观测到的海洋状态的知识仔细地评估了新的分析,但是使用更遥远的过去的观测的稀疏分布进行次采样,以表明该方法产生无偏的历史重建。 海面风场数据集使用RSS第7版微波辐射计风速数据构建。输入的微波数据由遥感系统处理,资金来自美国宇航局测量计划和美国宇航局地球科学物理海洋学计划。 该风速产品用于气候研究,因为输入数据经过了仔细的相互校准和一致的处理。每个netCDF文件包含: 1)风速月平均值,网格尺寸360x180x自1988年1月以来所有月份的数量(随时间增加); 2)一组12个月的气候学风速,网格大小为360x180,气候学是1988-2007年20年期间计算的平均值; 3)从1988年1月以来360x180x#个月的月平均数减去上述气候图得出的风速月异常(随时间增加); 4)风速趋势图,网格尺寸360x180,趋势计算时间为1988-01-01至最近完整日历年;5)时间纬度图(有效数据至少需要10%的纬度单元),网格尺寸为自1988年1月起180 x#个月(随时间增加)
葛咏, 李强子, 董文
“一带一路”沿线34个关键节点区域极端干旱历史事件泛在网络数据是从互联网收集而来。该数据通过Python程序语言编写网络爬虫,通过调用谷歌和百度搜索引擎根据极端干旱事件的关键词获得网页信息,并对网页信息进行解析,提取事件发生的时间、地点以及事件概况、影响范围、受灾人数、死亡人数、网页地址等核心信息。该数据可用于极端事件中极端干旱的风险评估,从而为“一带一路”沿线关键节点和区域开展极端干旱风险研究提供重要支撑作用。
葛咏, 凌峰
数据是按照节点所在国家从EM-DAT数据库中筛选后再结合灾害影响分为进一步筛选和按节点划分。EM-DAT是一个关于自然和技术灾害的全球数据库,包含1900年至今世界上21000多起灾害发生和影响的基本核心数据。EM-DAT由比利时布鲁塞尔天主教大学公共卫生学院灾害流行病学研究中心(CRED)维护。该数据库主要目的是在国家和国际两级为人道主义行动服务。该倡议旨在使备灾决策合理化,并为脆弱性评估和确定优先事项提供客观基础。 数据库由联合国机构、非政府组织、保险公司、研究机构和新闻机构等各种来源的信息组成。优先考虑来自联合国机构、各国政府以及红十字会与红新月会国际联合会的数据。这种优先顺序不仅反映了数据的质量或价值,而且反映了大多数报告来源并不涵盖所有灾害,或存在可能影响数字的政治限制。这些条目会不断地被审查是否不一致、冗余和不完整。CRED每天整合和更新数据。每月进行一次进一步检查,并在每个日历年结束时进行修订。
葛咏, 李强子, 董文
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及一带一路区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以百米网格为评估单元,提取并计算每个单元里与风暴潮灾害危险性、暴露度和脆弱性相关的指标,如节点潮位历史强度、风暴历史到达频次、历史损失、人口密度、土地覆盖类型等指标。在此基础上,构建风暴潮灾害风险综合指数,利用加权方法综合上述各指标得到风暴潮风险指数。最后对风暴潮风险指数进行归一化处理,得到0-1之前的风险指数值,以此来评价各评估单元风暴潮风险的高低,并可用于进行风暴潮风险等级评估。同时,数据集还包括了对应的危险性、暴露度和脆弱性评估结果。 数据集中仅包含了存在风险的11个节点区域(孟加拉吉大港、缅甸皎漂港、印度加尔各答、缅甸仰光港、巴基斯坦卡拉奇、孟加拉达卡、印度孟买、斯里兰卡汉班托塔港、泰国曼谷、中缅石油天然气管道、雅万高铁)
董文
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及一带一路区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以百米网格为评估单元,提取并计算每个单元里与风暴潮灾害脆弱性相关的指标,如人口密度、GDP值、土地覆盖类型等指标。在此基础上,构建风暴潮灾害脆弱性综合指数,利用加权方法综合上述各指标得到风暴潮脆弱性指数。最后对风暴潮风险指数进行归一化处理,得到0-1之前的脆弱性指数值,以此来评价各评估单元风暴潮脆弱性的高低,并可用于进行风暴潮脆弱等级评估。 关键节点数据集中仅包含了存在风险的11个节点区域 (孟加拉吉大港、缅甸皎漂港、印度加尔各答、缅甸仰光港、巴基斯坦卡拉奇、孟加拉达卡、印度孟买、斯里兰卡汉班托塔港、泰国曼谷、中缅石油天然气管道、雅万高铁)。
董文
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。土壤相对湿度指数是表征土壤干旱的指标之一,能直接反映作物可利用水分的状况。
葛咏, 吴骅
UHSLC提供了具有两个质量控制级别(QC)的潮汐测量数据。 其中快速交付(FD)数据是在数据收集的1-2个月内发布的,并且只接收关注于大级别转移和明显异常值的基本QC。GLOSS/CLIVAR(以前称为WOCE)“快速”海平面数据是按小时、每天和每月的价值进行分配。这个项目得到了NOAA的气候和全球变化计划的支持。其中每个文件都有一个名称“h######dat”,其中“h”表示每小时的海平面数据,而“###”表示站点号码,每个站点都存在一个文件。UHSLC数据集是GLOSS数据流。在UHSLC数据库中有许多潮汐记录,但骨干是光缆核心网(GCN)——全球300个验潮站的全球集合,它是全球原位海平面网络的基础。该网络被设计成在各种时间尺度上提供全球沿海海平面变化的均匀分布采样。
董文, University of hawaii sealevel center (UHSLC)
基于全球热带气旋路径数据、全球灾害事件及损失数据、全球潮位观测数据以及34个关键接诶单区域的DEM数据、海岸线分布数据、土地覆盖信息、人口及其他相关数据,以百米网格为评估单元,提取并计算每个单元里与风暴潮灾害危险性相关的指标,如节点潮位历史强度、风暴历史到达频次、历史损失、离岸线的距离等指标。在此基础上,构建风暴潮灾害危险性评估指数,利用加权方法综合上述各指标得到风暴潮危险指数。最后对风暴潮危险指数进行归一化处理,得到0-1之前的危险指数值,以此来评价各评估单元风暴潮危险性的高低,并可用于进行风暴潮危险等级评估。数据集包括“一带一路”沿线34个节点中有风暴潮灾害危险的11个节点的危险性评估结果图。
葛咏, 李强子, 董文
历史极端降水导致地表淹没范围数据集评估了一带一路重点区域在极端降水下地表被淹没的范围,为当地政府部门决策提供依据和参考,以便在极端降水发生前进行预警,降低极端降水所带来的生命财产损失。 此数据集以极端降水阈值集和极端降水识别数据为基础,确认发生极端降水的时间节点和区域,再到NASA网站上下载对应时间和地区的淹没范围产品,利用ArcGIS空间分析结合连接以上数据,构建了34个关键节点历史极端降水导致地表淹没范围数据集。 数据主要包括34个关键节点(万象、中缅石油天然气管道、中老泰柬铁路、亚历山大港、仰光、关丹、加尔各答、华沙、卡拉奇、叶卡捷琳堡、叶卡捷琳堡等区域)
吴骅
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。土壤相对湿度指数是表征土壤干旱的指标之一,是土壤相对湿度与田间持水量的比值,能直接反映作物可利用水分的状况。土壤湿度数据由SMAP遥感土壤水分数据产品通过降尺度方法得到,田间持水量数据来源于世界土壤数据库(HWSD)。详细计算公式与方法可参见:《农业干旱等级国家标准》标准号:GB/T 32136-2015。数据覆盖一带一路沿线34个关键节点区域。
吴骅
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某时间段的降水量与同时期潜在蒸散量之差除以潜在蒸散量。
葛咏, 吴骅
体感温度是指人体感受到的冷热程度,受温度、风速和湿度的影响。该数据的空间范围覆盖泛第三极区域34个关键节点(万象、仰光、加尔各答、华沙、卡拉奇、叶卡捷琳堡、吉大港、塔什干等地区);空间分辨率为100m。 数据处理过程:以气象站点监测数据为基础数据源,基于Humidex指数计算体感温度,再使用基于高程校正的温度插值方法获得整个区域1km格网化数据,并将其降尺度为100m。高温热浪危险性数据集主要以强度为评价指标。空间范围、空间分辨率与体感温度数据集一致,时间分辨率为年。 判断高温热浪的标准为:体感温度连续3天超过29℃的天气过程判断为一次高温热浪。
杨飞, 武夕琳, 殷聪
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某段时间的降水量与同时段内潜在蒸散量之差再除以同时段内潜在蒸散量得到。降水量数据来自TRMM/GPM卫星降水数据降尺度,潜在蒸散量的估算采用Thornthwaite方法。详细算法请参考《气象干旱国家标准》(GB/T 20481-2017)。数据仅覆盖一带一路沿线34个关键节点区域。
吴骅
本数据集基础数据源来自于美国国家海洋和大气管理局(NOAA)网站,NOAA卫星是气象观测卫星,可提供逐小时、逐日到逐年时间分辨率不等的气象数据,观测站基础观测数据可提供包括温度、降水、露点、风速等在内的气象环境信息。本数据集主要覆盖泛第三极东南亚及中东地区关键节点区域。数据处理主要步骤如下:首先按照我国国家标准《GB/T 29457-2012》中对高温热浪的定义,基于基础气象数据,判断高温热浪发生情况,进而统计得到高温热浪发生频次,最后依据高温热浪持续时间及发生强度整理得到历史高温热浪灾害事件数据集。该数据集有助于明确各研究区极端高温灾害的发生情况,为判断各地区高温热浪强度提供参考资料和有力依据。
葛咏, 刘庆生
热带气旋(TC)最佳路径数据已经作为单独的风暴路径存在于其他机构。 IBTrACS将这些数据集合并到一个全球TC数据库中。目的是克服数据可用性问题,通过直接与所有区域专门气象中心和其他国际中心和个人合作,创建全球最佳轨道数据集,将多个中心的风暴信息合并成一个产品,并将数据存档供公众使用。 世界气象组织热带气旋方案已批准IBTrACS作为热带气旋最佳路径数据的官方归档和分发资源。 IBTrACS 包含最完整的全球历史热带气旋集,结合来自许多热带气旋数据集的信息 , 通过在一个地方提供来自多个源的风暴数据,简化机构间比较, 提供流行格式的数据以方便分析, 检查风暴库存、位置、压力和风速的质量,将信息传递给用户。在集中位置提供热带气旋最佳路径数据,以帮助我们了解全球热带气旋的分布、频率和强度。IBTrACS的主要目的是支持科学研究工作。
葛咏, 李强子, 董文
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。降水距平百分率反映某一时段降水量与同期平均状态的偏离程度,以百分率表示。 该数据集以GPM IMERG Final Run(GPM)日值降雨资料为基础,计算对应地区的降水量,采用降水距平百分率等级评价指标,分析了不同等级干旱的分布特征,空间分辨率200m。 数据的区域为泛第三极34个关键节点(阿巴斯、阿斯塔纳、科伦坡、瓜达尔、孟巴、德黑兰、万象等地区)。
吴骅
本数据集收集了斯里兰卡南部海域2013年9月到2014年5月的波浪潮位数据,斯里兰卡位于“海上丝绸之路”核心节点,是我们石油运输的生命线必经节点,该海域的波浪观测数据对了解该海域波浪特性、保障货船和海上护航编队航行安全有重要意义。数据通过布防在海底压力式传感器获取,通过异常值的剔除等质量控制数段,保证数据可靠性。该数据对分析海上丝绸之路海洋灾害评估、船只通过性安全评估和研究该海域波浪特性有重要意义。
罗耀
1)数据内容包括2019年新疆维吾尔自治区22个小流域2.5米分辨率土壤水蚀模数数据集(2019年),数据单位为t/(hm2·a)。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算22个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。22个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
中巴经济走廊,北起中国新疆喀什,南至巴基斯坦最南端瓜达尔港,全长3 000 km,是贯通南北丝路的关键枢纽,也是“一带一路”的重要组成部分,区内复杂的地质、地貌、气候、水文条件导致该区成为滑坡泥石流易发、频发区。通过野外考察和卫星影像结合,建立的中巴经济走廊典型滑坡泥石流影像解译标志;结合交互解译和野外调查验证,确定中巴经济走廊范围内滑坡、泥石流灾害空间分布数据集,对后续开展中巴经济走廊滑坡泥石流灾害风险分析以及防灾减灾提供重要的数据支撑。
邹强
本数据集主要包含2018年12个月全球SPEI空间分布、2018年全球干旱强度,以及降水、陆表温度、0-10cm土壤湿度与过去10年(2009-2018)的距平;数据使用了距平指数法,最大值合成法以及趋势分析法计算得到了2018年全球干旱强度以及主要气象因子距平数据,数据时间尺度为2018-01-01到2018-12-31,空间分辨率为0.5度,数据可为分析2018年全球干旱分布、干旱评价提供科学参考。
田丰, 武建军, 周红敏
该数据集分析了2018-2019年全球典型洪水灾害事件的时空分布规律、影响及损失情况。2018年,全球洪水灾害发生次数共109起,死亡人口1995人,受灾人口总数达1262万人次,直接经济损失约为45亿美元,在全球近30年中处于较低水平。2018年全球洪灾事件发生次数上半年较下半年多,5月至7月发生频次较高。因此,以2018年美国弗罗伦斯飓风洪水、2018年尼日利亚尼日尔河洪水及2018年中国山东寿光洪水等三个典型灾害事件为案例,从灾害背景、致灾因子、受灾情况等方面进行了分析。
蒋梓杰, 蒋卫国, 武建军, 周红敏
全球台风路径数据集包含了2018年29个发生在西北太平洋的台风路径点的数据,包含时间、经纬度、中心气压、风速风力、未来移向、未来移速、风力等级等指标;数据来源于中央气象台台风网(http://typhoon.nmc.cn/web.html),使用python抓取了网页发布的台风路径数据,并将抓取的excel数据表整理导成shapefile形式,按照台风风力等级划分标准赋予每一个路径点风力等级; 可以应用于基于台风路径点的移动情况、风速风力等的特征、影响分析。
陈怡婷, 杨华, 武建军, 周红敏
此数据集包含2018全年及2019上半年全球重大林火案例数据,包括2018年11月美国加州林火、2018年7月希腊阿提卡区林火及2019年3月中国山西省林火3个案例数据。具体数据包括:监测范围的火烧强度数据及灾前灾后植被指数变化数据。该数据集主要用于描述2018-2019上半年全球重大林火事件的发生、发展、影响及恢复,数据主要来源于NASA官网和EM-DAT数据库,在EXCEL和ArcGIS中运用统计与空间分析方法,对数据进行处理。数据来源可靠,处理方法科学严谨,可有效运用于全球(林火)灾害案例分析研究。
杨雨晴, 宫阿都, 武建军, 周红敏
此数据集是对近30年全球的强震(Mw≥5)活动性水平进行分析,并将其进行空间化呈现,可以得到近年来全球强震频发、活动性水平高的分布区域,将2018年强震分布与其进行对比,得到2018年全球强震活动的分布特征。强震原始数据来自USGS,对其进行局部密度计算作为频度信息,对所有震例的震级进行全球范围的插值,之后对频度和震级进行相乘作为其强震活动性水平。该数据集为TIff格式,空间分辨率约为80km。该数据集可以在全球尺度上对强震的活动水平强弱分析提供参考,对全球地震危险性分析、防震减灾体系的构建具有一定辅助意义。
陈晋, 唐宏, 武建军, 周红敏
数据包含了2019年3月发生于南半球的热带气旋“伊代”的路径数据,以及由其引发的南部非洲洪灾受淹范围的数据,是2019年全球重大热带气旋灾害的重要数据源补充。热带气旋路径数据整理自国家卫星气象中心的监测数据,使用ArcGIS软件读取经纬度坐标获得;南部非洲洪灾的受淹范围数据是中科院遥感所基于高分三号卫星影像提取的。 数据可用于热带气旋“伊代”的路径分析、受影响情况分析和灾损评估等。
陈怡婷, 杨华, 武建军, 周红敏
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率300米。2)土壤侵蚀强度数据采用中国土壤侵蚀预报模型(CSLE)计算获取。土壤侵蚀预报模型公式中包含降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子、耕作措施因子。降雨侵蚀力因子由青藏高原各站点降雨数据插值获得;土壤可蚀性因子、工程措施因子、耕作措施因子采用第一次水利普查数据;坡长因子、坡度因子通过30m高程数据计算后重采样得到;植被覆盖与生物措施因子由植被覆盖度结合土地利用数据和降雨侵蚀力比例计算得出,其中植被覆盖度是由MODIS的植被指数产品通过像元二分法计算得到。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。
章文波
1)数据内容包含泛第三极65国区域土壤侵蚀强度栅格数据。2)土壤侵蚀强度数据采用中国土壤侵蚀预报模型(CSLE)计算获取。土壤侵蚀预报模型公式中包含降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子、耕作措施因子。65国降雨侵蚀力因子由美国气候预测中心(CPC)发布的日降雨量产品计算获得;土壤可蚀性因子采用250mSoilGrid网格土壤数据计算;耕作措施因子利用植被覆盖度结合土地利用和降雨侵蚀力比例计算;工程措施初稿暂未考虑,暂时取值为1;坡长因子、坡度因子通过30m高程数据计算后重采样得到;植被覆盖与生物措施因子由植被覆盖度结合土地利用数据和降雨侵蚀力比例计算得出,其中植被覆盖度是由MODIS的植被指数产品通过像元二分法计算得到。3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀强度数据对研究泛第三极65国土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
章文波
1)数据内容包括泰国18个小流域5米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算40个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。18个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀强度数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
章文波
“一带一路”沿线国家灾害数据,主要来自全球灾害数据库。该数据库记录的灾害信息来源于联合国、政府和非政府组织、研究机构和媒体等多种途径;数据指标详细记录了灾害发生国家、灾害类型、发生日期、死亡人数和经济损失估计等信息。 本研究从该数据库逐条摘录一带一路沿线国家自然灾害记录,最终形成沿线65国9大主要灾种的灾害数据库。 搜集整理的自然灾害记录,大致可以分为9类,包括:洪涝、滑坡、极端气温、风暴、干旱、林火、地震、块体运动和火山活动等。 一带一路沿线国家,1900~2018年,总计5479条灾害记录;其中,2000~2015年,有2673条灾害记录。在此基础上,从灾害频次、死亡人口、受灾人口和经济估损等4个方面,开展沿线国家的自然灾害情况调查。 整体上看,一带一路沿线国家,1900年以来,总计发生各类自然灾害5479次,导致约1900万人死亡,造成经济损失约9500亿美元。其中,发生频次最多的是洪涝和风暴;经济损失最多的是洪涝和地震;受灾人口最多的是洪涝和干旱;死亡人口最多的是干旱和洪涝。
尹君
本数据集包含青海近50年的自然灾害信息,包括干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠灾、地质灾害等自然灾害产生的时间地点及所造成的后果。 青海省地处青藏高原东北部,总面积72 万平方千米。境内河流纵横,冰川广布,湖泊众多,因中华民族的两条母亲河长江、黄河及著名国际河流澜沧江发源于此而素有"中华水塔"之称;全省有可利用草地33.5 万平方千米,天然草场面积仅次于内蒙古、西藏和新疆而居全国第四位,草场类型多样,草地资源十分丰富,拥有青藏高原独特气候条件下生长发育的、并对高原生态环境特征具有较强代表性的维管束植物113 科、564 属、2100 种左右。青海省作为青藏高原的主体部分,是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带。青海境内地形、地貌复杂,高山、谷地、盆地交错,多年积雪、冰川、戈壁、沙漠、草原等广有分布。复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了青海是一个气象灾害十分频繁的省份。其主要的气象灾害有干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴等。 数据摘录自《中国气象灾害大典·青海卷》,属于人工录入总结校对。
青海省统计局
1)数据内容包括泛第三极地区65国以及中国西部抽样单元布设图。2) 从北纬70°-南纬10°,东经180°-西经180°在泛第三极范围布设抽样调查单元;纬度70°以上不布设样点;纬度60°-70°范围内,按照0.5纬度*1经度布设样点,即约为55km*55km-55km*38km网格布点;纬度40°-60°范围内,按照0.5纬度*0.75经度布设样点,即约为55km*63km-55km*42km网格布点;纬度40°以下范围内,按照0.5纬度*0.5经度布设样点;青藏高原范围内,按照0.25纬度*0. 25经度布设样点;中国西部的新疆、青海、甘肃、四川、云南5省份采用第一次全国水利普查水土保持普查中布设的调查单元。样点总数为29651个,其中青藏高原点数为4052个,中国西部普查样点数为8771个,中国以外65国样点数为16828个。 3)所选抽样单元分布均匀,数据质量良好。4)抽样调查单元布设图对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
魏欣
1)数据内容包括西藏11个小流域5米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算40个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
1)数据内容包括青海11个小流域30米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算11个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
章文波
泛第三极地区地震活动强烈,其地震活动的动力来源于印度板块、阿拉伯板块与欧亚板块的俯冲碰撞。在泛第三极地区(北纬0-56度,东经43-139度)1960年以来发生M≥6级地震3809次,其中M≥8级地震59次,M=7.0-7.9级地震689次, M=6.0-6.9级地震3061次。地震主要发生在印度板块与欧亚板块的碰撞边界印缅山脉、喜马拉雅山脉 、苏来曼山脉的山麓地区,以及阿拉伯板块与欧亚板块碰撞的扎格罗斯山脉地区。
王继
中亚地区2017年输沙势数据集,为tif格式。其空间范围涵盖里海在内的中亚五国地区,包括乌兹别克斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯坦。此输沙势为绝对输势,即各个方向的输沙通量的综合,不考虑输沙势的方向。该数据由GLDAS全球三小时同化数据提取计算获得。时间分辨率为月,空间分辨率为0.25°,时间范围为2017年。该数据可以作为沙尘传输模型的重要参数输入,也可用于评估中亚五国沙通量的总体分布情况。该数据集可作为风沙灾害评估的重要参考数据。
高鑫
该数据为涵盖六大经济走廊的坡度数据,能够反映出六大经济走廊地表单元陡缓的程度,单位°。该数据空间分辨率为0.016度,约为1.8km,经度范围12.09°E-180°,维度范围10.99°S-90°N,来源自美国国家海洋和大气管理局构建的Global Relief Model,基于“一带一路”国家边界裁剪得到。该数据是评估六大经济走廊中的自然灾害(包括泥石流、滑坡、山洪等灾害)风险所必需的基础数据之一,应用频率高与前景广泛。
邹强
数据集收集了1990-2014年间喜马拉雅-青藏高原地区发生的浅源地震的震源参数,精确的地震震源深度和震源机制解可以为地球深部变形和地震发震构造研究提供基本的科学依据。 波形数据来源于IRIS网站(http://ds.iris.edu/wilber3/find_event)。数据根据远震体波波形拟合方法得来。 震源深度误差为±3公里。 地震编号:不同分区按照时间顺序进行的地震编号ID 地震发震时刻:mm/dd/yyyy(月/日/年)、hh:mm(时/分) 地震发生位置:Longitude(经度)、Latitude(纬度)、Depth(深度) 地震震级:矩震级Mw 震源机制解:走向/倾向/倾角(Strike/Dip/Slip) 误差:理论波形与观测波形的最小二乘法方差(misfit) 莫霍面深度:Moho
白玲
数据集收集了1964-2011年间帕米尔-兴都库什地区发生的中深源地震的震源参数,地震重新定位结果更加清晰地刻画了帕米尔-兴都库什大陆深俯冲地区复杂的地下构造变形特征。波形数据来源于IRIS网站(http://ds.iris.edu/wilber3/find_event)到时数据来源于ISC网站(http://www.isc.ac.uk/)和CEDC网站(http://data.earthquake.cn/data/index.jsp?id=11number=9)。利用远震体波波形拟合和本研究发展的多尺度双差(Multi-DD)法进行地震定位。统计检验法获得的经纬度和深度误差分别为±4公里和±7公里。 地震发震时刻:yyyy(年)、mm(月)、dd(日)、hh(时)、mm(分)、ss.ss(秒) 地震震级:Magnitude(来自ISC地震目录) 地震发生位置:Latitude(纬度)、Longitude(经度)、Depth(深度) 深度定位方法:带有“F”标志的地震震源深度采用波形拟合方法确定
白玲
草浆造纸废液木质素固沙绿化的功能和机理研究项目属于国家自然科学基金“中国西部环境与生态科学”重大研究计划,负责人为空军装备研究院航空气象防化研究所王汉杰研究员,项目运行时间为2004.1-2006.12 该项目汇交数据: 1.2005-08-10-沙湖-金沙湾试验现场图片(jpg图件) 2.2006固沙试验现场图片(jpg图件) 3.宁夏金沙湾气象站气象资料(txt文本) 2005年8月13日至19日8:00,14:00,20:00观测数据,包括干球温度,湿球温度,0、5、10、15、20cm地温,蒸发量,气温 4.宁夏金沙湾群落生长量资料(txt文本) 包括四条样带的冠径和高度数据。 5.宁夏金沙湾土壤水资料(excel表格) 2005年8月14日至19日清水对照区和木质素喷洒区16个样方20CM和12CM深度的日间逐2小时土壤水分数据. 6.宁夏沙湖土壤水资料(excel表格) 2005年8月10日,11日各样方10CM,12CM,20CM深度土壤水分数据 7.宁夏沙湖固沙群落植物生长量资料(excel表格) 5个样地植物生长统计资料:种名,x,y,基,冠,高 ,株数.
王汉杰
该数据数字化自图纸的《奈曼旗、库伦旗、科尔沁左翼后旗沙漠化类型图》,该图的具体信息如下: * 主编:朱震达 * 副主编:刘恕、邱醒民 * 编辑 :冯毓荪 * 制图:冯毓荪、赵燕华、王建华 * 复照:李伟民 * 野外考察:朱震达、邱醒民、刘恕、沈竟其、冯毓荪、王一谋、杨有林、杨泰运、文子祥、刘阳宣 * 制图单位:中国科学院沙漠研究室编制 * 出版社:暂无 * 比例尺:1:300000 * 出版时间: 暂无 * 图例:波状起伏沙黄土平原、非沙漠化土地、甸子地、盐碱地、树林及灌木林、耕地、山地、沙丘 2、文件格式与命名 数据均以ESRI Shapefile格式储存,包括一下图层: 奈曼旗、库偏旗、科左后旗沙漠化类型图、河流、道路、湖泊、铁路、井泉、居民地 3、数据属性 沙化等级类 植被 本底类 正在发展中的沙漠化土地 耕地 灌丛沙地 盐碱地 甸子地 沙丘 严重沙漠化土地 树林及灌木林 山地 强烈发展的沙漠化土地 潜在的沙漠化土地 湖泊 非沙漠化土地 波状起伏沙黄土平原 2、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
王建华, 朱震达
该数据数字化自图纸,科尔沁草原大清沟地区沙漠化发展程度图(1981年),该图的具体信息如下: * 主编:朱震达 * 编辑:冯毓荪 * 制图:冯毓荪、姚发芬、王建华、赵燕华、李伟民 * 制图单位:中国科学院沙漠研究室编制 * 出版社:暂无 * 比例尺:1:50000 * 出版时间:暂无 * 图例:沟谷密林(Gully Dense Forest)、疏林(Sparse Woods)、灌木林(Brush)、人工林(Artificial Woodland)、苗圃和果园(Nursery and Vegetable Garden)、草地(Grass Land)、旱作农田(Dry Farmland)、撂荒地(Rejected Farmland)、沼泽地(Marsh Land)、流动沙丘(Shifting Snad-Dunes)、半流动沙丘(Semi-Shifting Sand-Dunes)、半固定沙丘(Semi-Fixed Sand-Dunes)、固定沙丘(Fixed Sand-Dunes)、水域(Water Area)、稻田(Rice)、居民地(Residential)、公路(Highway) 1、文件格式与命名 数据均以ESRI Shapefile格式储存,包括一下图层: 科尔沁草原大清沟地区沙漠化图,河流,沼泽,道路,湖泊,居民地 2、数据沙漠化属性字段: 沙化程度(Type),沙地形态类(Shapes),草地(Grassland),林地(Woodland),林地疏密度(W_density),耕地(Farmland) 3、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
王建华, 朱震达, 姚发芬, 冯毓荪
该数据数字化自图纸,科尔沁草原大清沟地区沙漠化发展程度图(1975年),该图的具体信息如下: * 主编:朱震达 * 编辑:冯毓荪 * 制图:冯毓荪、姚发芬、王建华、赵燕华、李伟民 * 制图单位:中国科学院沙漠研究室编制 * 出版社:暂无 * 比例尺:1:50000 * 出版时间:暂无 * 图例:沟谷密林(Gully Dense Forest)、疏林(Sparse Woods)、灌木林(Brush)、人工林(Artificial Woodland)、苗圃和果园(Nursery and Vegetable Garden)、草地(Grass Land)、旱作农田(Dry Farmland)、撂荒地(Rejected Farmland)、沼泽地(Marsh Land)、流动沙丘(Shifting Snad-Dunes)、半流动沙丘(Semi-Shifting Sand-Dunes)、半固定沙丘(Semi-Fixed Sand-Dunes)、固定沙丘(Fixed Sand-Dunes)、水域(Water Area)、稻田(Rice)、居民地(Residential)、公路(Highway) 1、文件格式与命名 数据均以ESRI Shapefile格式储存,包括一下图层: 科尔沁草原大清沟地区沙漠化图,河流,沼泽,道路,湖泊,居民地 2、数据沙漠化属性字段: 沙化程度(Type),沙地形态类(Shapes),草地(Grassland),林地(Woodland),林地疏密度(W_density),耕地(Farmland) 3、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
王建华, 朱震达, 冯毓荪, 姚发芬
该数据数字化自图纸,科尔沁草原大清沟地区沙漠化发展程度图(1958年),该图的具体信息如下: * 主编:朱震达 * 编辑:冯毓荪 * 制图:冯毓荪、姚发芬、王建华、赵燕华、李伟民 * 制图单位:中国科学院沙漠研究室编制 * 出版社:暂无 * 比例尺:1:50000 * 出版时间:暂无 * 图例:沟谷密林(Gully Dense Forest)、疏林(Sparse Woods)、灌木林(Brush)、人工林(Artificial Woodland)、苗圃和果园(Nursery and Vegetable Garden)、草地(Grass Land)、旱作农田(Dry Farmland)、撂荒地(Rejected Farmland)、沼泽地(Marsh Land)、流动沙丘(Shifting Snad-Dunes)、半流动沙丘(Semi-Shifting Sand-Dunes)、半固定沙丘(Semi-Fixed Sand-Dunes)、固定沙丘(Fixed Sand-Dunes)、水域(Water Area)、稻田(Rice)、居民地(Residential)、公路(Highway) 1、文件格式与命名 数据均以ESRI Shapefile格式储存,包括以下图层: 科尔沁草原大清沟地区沙漠化图,河流,沼泽,道路,湖泊,居民地 2、数据沙漠化属性字段: 沙化程度(Type),沙地形态类(Shapes),草地(Grassland),林地(Woodland),林地疏密度(W_density),耕地(Farmland) 3、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
王建华, 朱震达, 冯毓荪, 姚发芬
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件