青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
我们提供了中国范围内1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2020年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land时间序列数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。我们进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,我们提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
上官微, 李清亮, 石高松
该气象数据为中国科学院珠穆朗玛大气与环境综合观测研究站观测场内(86.56°E, 28.21°N,4276m)2019-2020年观测的气温、相对湿度、风速、降水量、气压、辐射、土壤温湿度等基本气象数据。降水量为日累计值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。 该数据可供从事气象、大气环境或生态等研究的学生和科研人员使用(注意:使用时必须在文章中标明数据来源于中国科学院珠穆朗玛大气与环境综合观测研究站,Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS/CAS))
席振华
1)本数据是依据最新的22个CMIP6耦合全球气候模式模拟结果计算的Aridity Index(干燥指数)数据;2)计算公式为P/PET(降水与潜在蒸散发的比值),PET的计算依据PM公式;3)包括SSP2-4.5与SSP5-8.5两种情境的中亚大湖区1900年1月到2100年12月的月数据,分辨率为1度*1度;4)该数据可用于分析未来中等以及高排放情境下中亚大湖区干湿格局分布以及演变过程的预估。该数据已进行3个月滑动处理。
华丽娟
本数据集为1948-2018 干旱指数AI年数据集,空间覆盖范围为60S-60N,180E-180W,空间分辨率为0.5°,时间分辨率为逐年。其基于Penman–Monteith model 计算潜在蒸散发(PET),其中用到的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据来自于GLDAS,气温数据来自CPC,降水数据也来自于CPC。GLDAS资料分为两段,第一段来自于GLDAS_NOAH10_M V2.0系列,覆盖时间段为1948-2015年;第二段来自于GLDAS_NOAH10_M V2.1,覆盖时间段为2000-至今,我们利用2000-2014年的重合数据段进行拼接,将这一时期两套数据的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据平均值相减,得到差值,将差值加到V2.1的数据集中,从而计算PET。
于海鹏
数据集包含西藏墨脱地区墨脱国家气候观象台(29°18’N,95°19’E,海拔1305.0米)的大气气溶胶PM10, PM2.5 和PM1数据以及环境空气温湿度。观测仪器为GRIMM-180 环境颗粒物分析仪,观测时间为2021年4月8日至2021年5月22日,数据时间分辨率为10秒,仪器工作过程中产生的异常数据已经剔除。在观测期间,由于受南亚季风影响,空气湿度较大,观测场地周边受人为活动干扰较少。本数据集为研究藏东南地区大气粉尘气溶胶物理特性、时空变化特征和来源解析提供了基础数据。资助项目:第二次青藏高原综合科学考察研究任务六专题二(2019QZKK0602)。
黄建平, 张镭, 田鹏飞, 史晋森
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
基于中国地面逐日气象要素数据集、全国地理基础数据、自然环境基础数据集,运用像元二分模型、密度分析、RclimDex、非平稳标准化降水蒸散指数(NSPEI)和双线性内插法等多种指标计算方法计算了横断山区的极端降水、极端气温、干旱强度、干旱频率等多种指标。该数据集包括横断山区的孕灾环境基础数据集、极端降水指标基础数据集、极端气温指标基础数据集、干旱强度和干旱频率基础数据集。该数据集可为区域内极端高温、降水和干旱风险评估提供基本的指标体系。我们得出横断山区内90%以上站点的极端气温暖指数显著上升,极端气温冷指数显著下降。南北气温差异显著,以青藏高原为界,北部气温日较差大,平均在13.83℃,南部气温日较差小,平均为11.38℃,南部平均的冰冻日数在1d左右。随着重现期的增加,持续干燥期(CDD)大于110d的区域逐渐由西部扩大到金沙江下游流域;在不同重现期下,持续降雨期(CWD)和年降水总量(PRCPTOT)的高值区集中在西部和南部的边缘;北部的日最大降水量(RX1day)在不同重现期下变化不显著,在60mm以下;最低气温极小值(TNn)和最高气温极大值(TXx)在空间分布上北低南高,40℃以上的高温普遍发生在南部的干旱河谷。
孙鹏
该数据集包含了2019年1月1日至2019年12月31日的青海湖流域自动气象站观测数据。共有两个站点,其中鸟岛站位于青海省海南州共和县,观测点经纬度36°58′N,99°52′E;瓦颜山站位于青海省海北州刚察县伊克乌兰乡观测点经纬度37°44′ N,100°05′ E。观测要素包括3层(1m、5m、10m)空气温度(℃)和相对湿度(%),大气压强(hpa)和光合有效辐射(W/m2)。数据基于CR1000 数据采集器收集,使用hmp155a测量空气温度与湿度,使用CS106测量大气压强, 使用LI200R测量光合辐射,每半小时进行一次数据记录。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
该数据包含波密2008年降水稳定同位素δ18O日均值,气温和降水量;降水样品由波密气象局采集,降水稳定同位素是在法国气候与环境科学实验室(Laboratoire des Sciences du Climat et de l’Environnement, France)测定,δ18O由MAT-252质谱仪测定。气温和降水量由波密气象局在降水事件发生时记录,气温为降水事件开始与结束的平均值。降水稳定同位素δ18O精度为0.05‰。 该数据研究已发表在JOURNAL OF CLIMATE,题为Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling。
高晶
该数据集为孟加拉,Satkhira、Barisal、Sylhet3个观测站点2017-2018年的日降水稳定同位素数据(δ18O,δD,d-excess),由Bangladesh Atomic Energy Commission (BAEC)采集,在中国科学院青藏高原研究所环境与地表过程重点实验室用Picarro L2130i 波长扫描光腔衰荡光谱仪测得。 三个观测点样品采集地点及时间: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
高晶
通过近30年的研究,人们对青藏高原,特别是喜马拉雅山以北地区降水稳定同位素(2H和18O)的气候控制作用有了充分的认识。然而,尼泊尔(喜马拉雅山以南)对降水稳定同位素的控制知识还远远不够。 本研究描述了2016年5月10日至2018年9月21日期间尼泊尔加德满都降水稳定同位素的季节内和年度变化,并分析了对降水稳定同位素的可能控制因素。所有样品均位于尼泊尔首都加德满都(27°42′N, 85°20′E),平均海拔约1400m。并结合了2001年1月1日至2018年9月21日的气象资料,给出了降水量(P)、温度(T)和相对湿度(RH)的值。
高晶
该数据为中国科学院藏东南高山环境综合观测研究站在嘎隆拉24k冰川的表碛区自动气象站数据(AWS,Campbell公司),地理坐标为北纬29.765°,东经95.712°,海拔3950 m。数据包括气温(℃)、相对湿度(%)、风速(m/s)、净辐射辐射(w/m2)、水汽压(Kpa)和气压(mbar)日算术平均数据,原始数据中2018年10月之前每30分钟记录一个平均值,之后为10分钟记录一个平均值。温湿度采用HMP155A温湿度探头测定,净辐射探头型号为NR01,大气压力传感器探头为PTB210,风速传感器为05103,这些探头离地面2 m高。数据质量方面:本数据经过了严格的质量控制,先剔除了原始的10分钟和30分钟的异常数据,然后计算了每小时的算术平均数,最后计算日值,在计算日值时,如果小时数据的个数不足24个,予以剔除,数据表中对应的日期的数据为空。视为空值为剔除异常值后的数据除由于冬春季积雪较厚,气温低,导致部分参数数据有缺失外,数据经过严格质量控制,可供研究气候、冰川和水文等的科研工作者使用。
罗伦
采自青藏高原的冰芯样品提供了冰雪同位素组成变化的高分辨率记录。该数据集包含了自1864-2006年各年的冰芯氧稳定同位素数据,冰芯是从青藏高原南部宁金岗桑冰川钻取得到,长度为55.1米,通过利用中国科学院青藏高原研究所 环境变化与地表过程重点实验室的MAT-253同位素质谱分析仪测得氧同位素数据,测量精度为0.05%。 数据采集地点: 宁金刚桑冰川(90.2°E,29.04°N,海拔高度5950米)
高晶
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件