全球年度湖泊冰物候数据集包括北半球74245个湖泊的冻结日期和破裂日期。数据集分为三部分: 1:当前时间段数据,通过DLRM模型(提供了参数)从MODIS产品中获得,涵盖2001年至2020年74245个湖泊的冻融时间; 2-3: 历史(2)和未来(3)两个时间段湖泊冻融模拟,分别从1861-2005年和2006-2099年的基于温度的湖泊特定模型中获得(详见论文)。历史和未来的模拟仅针对30063个满足模型条件的湖泊。
王欣驰
该数据集提供了2001-2020年青藏高原71个湖泊的湖冰物候,包括开始冻结日、完全冻结日、开始消融日、完全消融日、完全封冻时间和湖冰覆盖时间。数据集采用动态阈值法提取自经过双星去云和临近日去云后的MODIS每日积雪产品。与粗分辨率被动微波AMSR-E/2湖冰物候数据集对比,开始冻结日的平均绝对误差为2.33-7.25天,完全消融日的平均绝对误差为1.75-4.67天。该数据可为青藏高原湖泊系统响应气候变化的相关研究提供数据基础。
蔡宇, 柯长青
本数据集包括青藏高原西部鲁玛江东错,美马错,骆驼湖和结则茶卡2016年以来湖泊水位观测数据 湖水水位通过HOBO水位计或Solist水位计观测,并通过岸边气压计进行校正,精度小于0.5 cm。 数据集包含以下内容: 2016-2021年鲁玛江东错湖水水位日变化数据; 2017-2019年,2020-2021年美马错湖水水位日变化数据; 2019-2020年骆驼湖湖水水位日变化数据; 2019-2020年结则茶卡湖水水位日变化数据。 水位,单位:m。
类延斌
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
李兴东, 龙笛, 黄琦, 赵凡玉
1978-2016青藏高原湖冰物候数据集包含青藏高原132个湖泊(面积大于40平方公里)1978-2016年的湖冰物候(开始结冰日、完全结冰日、开始融化日、完全融化、冰期、完全结冰期)。数据集利用模型和遥感结合的方式获取物候信息,首先基于MOD11A2提取的全湖平均湖面温度率定改进的湖泊半物理模型(air2water)生成日尺度长时序湖面温度序列,再利用MOD10A1雪覆盖产品获取湖冰物候提取的温度阈值。与现有研究结果和数据集对比,相关性(R方)高于0.75。该数据集结合遥感技术和数值模型的优势,为大时空尺度上分析青藏高原湖泊水-气交换、水热平衡及湖泊中生物化学过程对气候变化的响应提供支撑。
郭立男, 吴艳红, Zheng Hongxing, 张兵, 迟皓婧, 范兰馨
该数据主要为中国科学院藏东南站2014年4月架设位于昌都市八宿县然乌镇阿日村,然乌中湖边的气象站的气温数据,地理位置96.7699E, 29.4364N,3920m. 仪器探头型号为HMP155A,探头距离地表2m,下垫面为高寒草甸,部分原始数据有缺失,通过同样位于该地的通量站以及附近的四道班气象站和气象局的然乌站进行矫正,插值得到。 该数据为区域内少有的可共享数据,该数据可作为区域气候、河流、湖泊、冰川、生态等的背景基础数据。 数据使用时,文章中应该体现中科院藏东南站,更高精度的数据可以和数据作者联系。
罗伦
1967-2020年湖水表面温度(LSWT, 下社站); 1994-2020年湖冰冰厚和和结冰期(下社站); 1956-2020年流域径流(布哈站); 1956-2020年水位(下社站); 1956-2020年湖泊面积 ( 根据2001-2020年Landsat数据提取的湖泊面积和实测的湖泊水位建立面积-水位关系,从而利用实测水位数据估算无Landsat影像年份的面积); 1958-2019年气温(刚察站); 1958-2019年降水量(刚察站)
张国庆
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
利用长时间序列Landsat遥感数据(1976年的KH-9数据为辅助数据),人工目视解译获取了念青唐古拉山西段近40年(1970s-2018)共5期冰湖数据,对大于0.0036平方千米的冰湖从类型、规模、海拔、流域4个方面的变化特征进行了详细分析。研究发现,念青唐古拉山西段冰湖持续扩张,数量从1976年的192个增加到2018年的299个,增加了107个(+56%),相应地总面积由原来的6.75±0.13平方千米扩张到9.12±0.13平方千米,增加了2.37平方千米 (+35%);冰湖的类型正发生明显的变化;较小规模的冰湖变化较快;冰湖的扩张正向更高海拔发展。
罗玮, 张国庆
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
The dataset integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively. The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology studies in the mountain cryosphere region.
WANG Xin, GUO Xiaoyu, YANG Chengde, LIU Qionghuan, WEI Junfeng, ZHANG Yong, LIU Shiyin, ZHANG Yanlin, JIANG Zongli, TANG Zhiguang
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
邱玉宝, 田帮森
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊。
邱玉宝
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊,可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
湖冰物候是描述湖冰覆盖的季节性循环特征,湖冰物候的变化是碳、水和能量过程研究中的重要内容,也是气候变化的敏感因子之一。本数据集是基于被动微波反演的湖冰物候,包含青藏高原与北半球高纬度地区200个湖泊2002-2018年的湖冰物候(含湖泊开始冻结日期、完全冻结日期、开始融化日期、完全融化日期),部分湖泊可以延伸至1978年。该数据与同时期MODIS监测结果验证表明二者的判读误差为2-4天。用户可利用此数据开展北半球气候变化研究。
邱玉宝
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
张国庆
高亚洲地区是中纬度全球变化敏感区和研究的热点区域,其境内湖泊星罗棋布,湖冰冻融参数是全球变化的关键敏感因子之一。由于冰水介电常数差异大,高重访率且对天气不敏感的星载被动微波遥感可实现湖冰冻融状态的快速监测。本数据集依据微波辐射计像元内湖泊和陆表的面积比例,应用混合像元分解方法获取了像元(亚像元级)的湖泊亮温信息,实现高亚洲地区被动微波遥感亚像元级湖冰冻融监测,并采用多种被动微波数据,共计获得高亚洲区域 2002-2016 年 51 个中大型时间序列湖泊亮温数据和冻融状态信息。以无云MODIS 光学产品为验证数据,在高亚洲不同区域,选取可可西里湖、达则错、库赛湖等三个大小不一的湖泊进行冻融判别验证,结果表明微波和光学遥感所获取的湖冰冻结和融化参数具有较高的一致性,其相关系数可达0.968 与 0.987。本数据集包含湖泊的时间序列亮温值和湖冰冻融参数,可进一步对湖泊开展特征参数反演,以及提升对高亚洲地区的湖冰冻融的理解,为高亚洲地区气候、环境变化以及高亚洲对全球气候变化响应模型提供数据基础。数据集由 2 部分数据组成,其一为 2002-2016 年高亚洲区域 51个湖泊的被动微波遥感亮温数据集,观测时间间隔为 1~2 天;其二是由湖泊亮温数据集判断所获得的湖冰冻融数据集。文件名分别为:最邻近法与像元分解的湖泊亮温数据 .zip(12 MB),2002–2016 高亚洲 51 个湖泊湖冰冻融数据集 .xls(0.1 MB)
邱玉宝
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件