碳氮磷硫钾等是生态系统重要的基本生命元素,揭示其区域变异与空间格局对人类活动的影响及其未来生态系统可持续发展具有重要作用。青藏高原具有独特的高寒植被类型以及丰富的垂直带地貌和地表覆盖类型,其地表元素(碳氮磷硫钾)的生物地理格局是驱动高寒生态系统碳氮水循环过程耦合和相关机制的重要表现形式。本数据集聚焦青藏高原水塔区和喜马拉雅山区复杂生态系统中地表物质(植物叶-枝-干-根和凋落物)的分配模式和空间变异,以期为区域模型模拟和生态管理提供数据支撑。
李明旭
本数据集为非洲萨赫勒地区1990-2020年每5年1期的30m土地利用/覆盖分类产品。该产品基于一套集合机器学习和多元数据融合的土地覆盖分类协同框架,利用谷歌地球引擎 (GEE) 云计算平台,将监督土地覆盖分类和现有多个主题土地覆盖图融合生产而成。分类体系采用FROM_GLC分类体系,包括耕地、森林、草地、灌丛、湿地、水体、不透水面和裸地共8大类。该数据集经过大量萨赫勒区域全季节样本验证,数据集整体准确率在75%左右,变化区域检测的准确率在70%以上,也与粮农组织和现有的土地覆盖图有很好的相似性。该数据集可为非洲萨赫勒地区土地资源可持续利用和环境保护等提供数据支撑。
俞乐
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
1)数据内容:柴达木盆地沙蜥属和麻蜥属物种名录及其分布数据,包含纲、目、科中文名、科拉丁名、属中文名、属拉丁名、种拉丁名、种中文名、国家、省、市县、镇乡等分布地;2)数据来源及加工方法:基于2007至2021年间对柴达木盆地干旱荒漠区两栖爬行动物野外科考,记录该地区沙蜥属和麻蜥属蜥蜴的物种组成和分布范围;3)数据质量描述:标本的调查、采集和鉴定人员均为专业人员,样品的采集信息经过核对,确保分布数据的质量;4)数据应用成果及前景:综合分析柴达木盆地沙蜥属和麻蜥属蜥蜴的物种多样性和分布数据,可以为西北荒漠区及亚洲中部干旱区生物多样性编目提供重要资料,为评估生物多样性格局及制定保护策略提供科学依据。
郭宪光
本数据集包含两台部署在祁连山保护区的陆生脊椎动物红外相机及环境参量数据集。本设备部署在祁连山保护区寺大隆附近,时间跨度(2020.8-2021.10)。由于设备维护,光照不足等,部分数据不连续,但两台设备的数据可互为补充,可以重建出2020.8-2021.10祁连山保护区内观测点的全部信息。 两台设备有一台设备配备了红外相机,采集到4994张照片,可与上述传感器照片相互匹配后,或者拍照前后的生态因子信息。由于单个压缩文件较大,故采用分卷压缩,需要将三个压缩文件都下载后方可解压缩。 1. 祁连山保护区内出没的野生动物以及温度、湿度、光照、压强以及网络信号强度信息。采集间隔每半小时一次; 2. 数据来源:"陆生脊椎动物监测设备研制“课题,2016YFC0500104,完成单位:中国科学院动物研究所,原始数据,未加工; 3. 传感器数据采集间隔每半小时一次,温度精度正负0.1度,湿度精度正负0.5%,照片数据分为触发和定时两种,触发数据一般由出没在红外相机视野内的野生动物触发;定时拍照数据根据电池电量情况动态调节,采集间隔在1-12小时之间; 4. 本数据可用于记录保护区内的环境温度,结合红外相机数据,可用于分析野生动物活动节律,共存分析以及分布的限制因子等。
乔慧捷
叶面积指数,是生态系统的一个重要结构参数,用来反映植物叶面数量、冠层结构变化、植物群落生命活力及其环境效应,为植物冠层表面物质和能量交换的描述提供结构化的定量信息,并在生态系统碳积累、植被生产力和土壤、植物、大气间相互作用的能量平衡,植被遥感等方面起重要作用。数据来源于项目自主研发的分布式叶面积指数仪(基于半球图像),定时、定点、自下向上拍摄林冠的半球图像,并通过无线网络上传。本数据采集为原始的半球图像,需进一步处理才可计算叶面积指数,可使用Hemiview等软件处理。
苏宏新
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序EVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过EVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了背景调节参数C1,C2和大气修正参数L进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:EVI相比于NDVI具有较强的抗大气干扰能力以及抗噪音能力,更适用于气溶胶含量较高的天气状况下,以及植被茂盛区。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序MSAVI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过MSAVI的计算公式进行生产的,即在SAVI的基础上,针对SAVI在植被覆盖茂盛区表现不敏感的问题进行了改进,具体的计算方法参照Qi,1994文献;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被茂盛覆盖区域较为稳定,而在植被稀疏区表现不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NBR产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NBR的计算公式进行生产的,即利用近红外波段和短波红外波段的比值来增强火烧迹地的特征信息,具体计算公式为(近红外波段-短波红外波段2)/(近红外波段+短波红外波段2);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数常被用于火烧迹地信息提取以及监测火烧区域植被的恢复状况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDMI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDMI的计算公式进行生产的,即利用近红外与短波红外之间的差异来定量化反映植被冠层的水分含量情况;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:NDMI与冠层水分含量高度相关,可以用来估计植被水分含量,而且NDMI与地表温度之间存在较强的相关性,因此也常用于分析地表温度的变化情况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的计算公式进行生产的,即通过计算近红外波段和红波段之间的差异来定量化植被的生长状况,具体公式为:(近红外波段-红波段)/(近红外波段+红波段);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数可反映植被的健康情况及植被的长势,由于计算简单,指示性好,被广泛应用于农业、林业、生态环境等领域,同时也是生态物理参数反演的重要输入参数,是目前应用最为广泛的植被指数之一。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SAVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SAVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了土壤调节因子S进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被稀疏区域较为稳定,而在植被覆盖茂盛区域不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即根据红光波段和蓝光波段开展乘积平方根计算即可得到,基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
数据内容:该数据集产品包含青藏高原地区30米分辨率的水体悬浮物浓度产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Landsat系列数据,通过提取有效的离水辐射或离水反射率,从而对水体成分进行反演。本产品是使用经验/半经验方法进行水中悬浮物浓度信息提取的初步结果。数据质量:整体精度较高,后续将结合科考实测数据对产品进一步优化。数据应用成果及前景:数据集将持续更新,可用于青藏高原地区生态系统变化研究与分析。
刘慧婵
本数据为“Major turnover of biotas across the Oligocene/Miocene boundary on the Tibetan Plateau” (中文标题“青藏高原渐新世——中新世界线生物群的重大转换”)论文的全文相关图片数据。 数据来源为论文作者绘制或拍摄的原创图片的高清原图版本。 数据加工方式:原始图片未经二次加工。 数据可作为青藏高原隆升、环境及生物群变化等研究的参考资料。 该论文数据可在征得论文相关作者同意及注明出处的前提下引用。
邓涛
该数据集包含了2020年1月1日至2020年12月31日兰州大学兰州大学寒旱区科学观测网络敦煌站气象要素梯度观测系统数据。站点位于甘肃敦煌西湖,下垫面是湿地。观测点的经纬度是93.709E,40.348N,海拔993m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_2m、RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_20cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_20cm)(单位:摄氏度)、土壤水势(SWP_5cm,SWP_20cm)(单位:千帕)、土壤电导率(EC_5cm,EC_20cm)(单位:微西门子/厘米)光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常数据以-6999表示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
数据包含:浮游动物物种名录;浮游动物密度;显微镜镜检;高通量测序;数据完善;为青藏高原湖泊构建原始数据集,浮游动物是湖泊水生态调查不可缺少的环节,在系统中处于承上启下的位置,是食物网物质循环和能量流动的重要载体,系统调查和研究青藏高原湖泊浮游动物的群里组成和生物多样性,对于认知青藏高原湖泊生态系统的稳定性和弹性尤为重要,此外浮游动物对环境变化十分敏感,其结构和功能类群的变化可以指示环境压力的强度和变化幅度。
李芸
1)数据内容:本数据集包含2010-2019年青藏高原地区30米分辨率叶面积指数遥感产品。2)数据来源及加工方法:利用Landsat时间序列数据和物理机理模型反演得到的年最大合成叶面积指数产品。3)数据质量描述: 利用模拟数据的验证结果表明,产品的root-mean-square error(RMSE)约为1.16。4) 数据应用成果及前景:叶面积指数高度综合了植被的水平覆盖状况和垂直结构,是植被冠层的重要结构参数,该数据集可为陆面过程模拟、资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序FVC产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的像元二分模型进行反演的,裸土的NDVI值设为0.01,纯植被的NDVI值设为0.88;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:植被覆盖度是生态学的重要参数,广泛应用于生态环境监测研究。
张兆明
本图片集主要包括西藏冬季鸟类的生态照片,拍摄时间为2020年12月,拍摄人为宋刚。主要涉及区域为拉萨、曲水等地,拍摄的鸟类物种有藏马鸡、高原山鹑、红嘴山鸦、大鵟、拟大朱雀、大草鹛、灰腹噪鹛、褐岩鹨、鸲岩鹨等。主要涉及陆禽类,游禽类,涉禽类,鸠鸽类,猛禽类和鸣禽类等,分布于高山草甸、灌丛,林地,河流,湖泊,湿地,农田等生境类型。物种鉴定人有中科院动物所宋刚、邢家华、乔慧捷,西藏自治区高原生物研究所杨乐、周生灵,西藏自治区自然博物馆益西多杰等人。
宋刚
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件