该数据集包含了2021年4月13日至2021年12月31日的40m塔涡动相关仪观测数据。站点位于河北省怀来县东花园镇,下垫面水浇地玉米。观测点的经纬度是115.7923E, 40.3574N,海拔480m。涡动相关仪的采集频率是10Hz,架高为3.5 m,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(EC150)之间的距离是0 cm。 发布的数据是采用Eddypro软件对原始采集的10Hz数据进行后处理得到的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对处理后输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据每30min内缺失率大于10%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。在冬季EC150测量水汽密度出现很多负值,以-6999填充。 涡动相关仪发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(K),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度,感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 肖青, 徐自为, 柏军华
该数据集包含了2021年1月1日至2021年12月31日的大孔径闪烁仪观测数据,分别架设了两台型号为BLS450和zzlas的大孔径闪烁仪。站点位于河北省怀来县东花园镇,下垫面玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。大孔径闪烁仪的有效高度为14m,光径长度是1870m,发射端经纬度是115.8023E,40.3596N,接收端的经纬度是115.7825E,40.3522N。BLS450和zzlas的采集频率分别为5Hz和1Hz,平均为1min输出。 大孔径闪烁仪原始数据为1min,发布的数据为经过处理与质量控制后的30min平均数据,其中感热通量主要是结合自动气象站数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到。在迭代计算过程中,对于BLS450,选取Thiermann and Grassl,1992的稳定度函数;对于zzlas,选取Andreas,1988的稳定度函数。主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据;(2)剔除解调信号强度较弱的数据;(3)剔除降水时刻及其前后一小时的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。 关于发布数据的几点说明:(1)LAS数据以BLS450为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time:日期/时间,Cn2:空气折射指数结构参数(m-2/3),H_LAS:感热通量(W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测试验或站点信息请参考Guo et al. (2020),数据处理请参考Liu et al. (2013)。
刘绍民, 徐自为
该数据集包含了2021年1月1日至2021年12月31日的40m塔自动气象站观测数据。站点位于河北省怀来县东花园镇,下垫面为水浇地玉米。观测点的经纬度是115.7923E, 40.3574N,海拔480m。 自动气象站安装在40m塔上,采集频率为30s,且10min输出一次。观测要素包括7层空气温度、相对湿度(3m、5m、10m、15m、20m、30m、40m),朝向为正北;7层风速(3m、5m、10m、15m、20m、30m、40m),风向(10 m),朝向为正北;气压(安装在防水箱内);雨量(3 m);四分量辐射和光合有效辐射(4 m),朝向为正南;红外表面温度(8 m),支臂朝向正南,探头朝向是垂直向下;土壤温湿度探头埋设在气象塔正南方1.5m处,土壤温度探头埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160 cm处,土壤水分传感器埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm;平均土壤温度埋在地下2, 4cm;土壤热流板埋设在地下6 cm处。 观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。 自动气象站发布的数据包括:日期/时间Date/Time,空气温度(Ta_3m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m)(℃),相对湿度(RH_3m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m)(%),风速(Ws_3m, Ws_10m, Ws_15m, Ws_20m, Ws_30m)(m/s),风向(WD)(°),气压(Press)(hpa),降水(Rain)(mm),四分量辐射(DR、UR、DLR、ULR、Rn)(W/m2),光合有效辐射(PAR)(umol/s/m2),地表辐射温度(IRT_1、IRT_2)(℃),土壤热通量(Gs)(W/m2)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(%)、多层土壤温度(Ts_2cm 、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(℃)、平均土壤温度TCAV(℃)。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 肖青, 徐自为, 柏军华
该数据集包含了2021年1月1日至2021年12月31日的10m塔自动气象站观测数据。站点位于河北省怀来县东花园镇,下垫面为水浇地玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。 自动气象站安装在10m塔上,采集频率为30s,且10min输出一次。观测要素包括空气温度、相对湿度(5 m),朝向为正北;风速(10 m),风向(10 m),朝向为正北;气压(安装在防水箱内);雨量(10 m);四分量辐射(5 m),朝向为正南;土壤温湿度探头埋设在气象塔正南方1.5m处,土壤温度探头埋设深度为0cm、2cm、4cm、10cm、20cm、40cm、80cm、120cm和160 cm处,土壤水分传感器埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm;平均土壤温度埋在地下2, 4cm;土壤热流板(3块)埋设在地下6 cm处。 观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。 自动气象站发布的数据包括:日期/时间Date/Time,空气温湿观测(Ta_5m,RH_5m)(℃,%),风速(Ws_10m)(m/s),风向(WD)(°),降水(Rain)(mm),四分量辐射(DR、UR、DLR、ULR、Rn)(W/m2),地表辐射温度(IRT1、IRT2)(℃),土壤热通量(Gs_1、Gs_2、Gs_3)(W/m2)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(%)、多层土壤温度(Ts_0cm 、Ts_2cm 、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(℃)、平均土壤温度TCAV(℃) ,气压(Press)(hpa)。 观测试验或站点信息请参考Guo et al. (2020),数据处理请参考Liu et al. (2013)。
刘绍民, 徐自为
该数据集包含了2021年1月1日至2021年12月31日的10m塔涡动相关仪观测数据。站点位于河北省怀来县东花园镇,下垫面水浇地玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。涡动相关仪的采集频率是10Hz,架高为5 m,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15 cm。 发布的数据是采用Eddypro软件对原始采集的10Hz数据进行后处理得到的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对处理后输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据每30min内缺失率大于10%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 涡动相关仪发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(K),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度,感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 徐自为
1)数据内容 本数据集包括巴木错、拉昂错2019-2021年夏秋季和龙木错2020-2021年夏秋季的湖泊蒸发数据。计算蒸发数据所需的气象数据通过在湖边架设的自动气象站获取,观测高度为1.5m。 湖泊位置:巴木错(90.59°E,31.29°N),拉昂错(81.24°E,30.72°N),龙木错(80.47°E,34.60°N)。 自动气象站坐标:巴木错AWS(90.65°E,31.30°N),拉昂错AWS(81.22°E,30.73°N),龙木错AWS(80.43°E,34.59°N)。 时间分辨率:1d 空间分辨率:- 单位:mm 2)数据来源及加工方法 整体输送法。计算公式如下: LH=l_v ρ_a c_E U(q_s-q_a ) E=LH/(ρl_v ) 其中LH、E分别为潜热、蒸发。 气象数据使用湖泊边架设的自动气象站,使用的观测数据包括1.5m处气温、风速、相对湿度等;湖表温度使用ERA5-land逐小时数据;动量粗糙度、水汽粗糙度及热量粗糙度通过巴木错和拉昂错架设的涡动相关仪获取的数据反算得到。 3)数据质量描述 将计算获取的2020年巴木错湖泊蒸发数据与架设在巴木错湖心岛的涡动相关仪获取的8-10月蒸发数据进行对比,pearson相关系数r=0.57,p=2.842E-8。 4)数据应用成果及前景 水面蒸发是水循环过程中的一个重要环节,是水文学研究中的一个重要课题。它作为湖泊水量损失的主要部分,也是研究陆面蒸发的基本参证资料。基于观测资料计算得到的蒸发量可以作为青藏高原湖泊的准确蒸发量,是研究湖泊水量平衡的重要基础,通过获取位于不同气候区的三个湖泊蒸发量,可以更好地探索湖泊水面蒸发在不同气候区的变化规律。
马卫垚, 马伟强, 何佳男, 谢志鹏, 苏荣明珠, 胡伟, 马耀明
全球3小时河道洪水再分析数据GRFR,包括1)1980-2019年全球0.05度,3小时/日格点陆面产流数据。2)全球294万条河段(基于90m数字高程模型提取),3小时/日天然径流模拟数据。3)全球3小时河道洪水事件数据。4)基础地形数据MERIT-Basins。 该数据集以分布式水文模型VIC和河道汇流模型RAPID为模型链核心,集合一系列多源数据和模型手段构建的全球高分辨率高精度天然河川径流模拟系统模拟而成。基于美国6000余个站点3小时和全球14000余个站点日径流观测资料的精度评估表明,该数据能够较好地再现3小时和日尺度径流过程,同时能够较好地捕捉洪水事件。详细过程请参阅参考文献。 该数据集为遥感卫星径流反演算法开发、全球洪水特性分析和物理机制分析尤其是无资料地区提供了强有力的新数据支撑。
杨媛, 潘铭, 林佩蓉
全球294万条河段的天然径流量模拟数据产品,单位m3/s。本数据是基于VIC水文过程模式与RAPID矢量河网汇流模型模拟得到。其中陆面水文过程模式空间分辨率为0.25°,矢量汇流模式中的河网数据基于90-m MERIT Hydro水文矫正地形数据产品提取。产流部分经过基于机器学习得到的径流特征值进行参数率定,并基于多分位数径流特征值进行了格点尺度的产流偏差矫正,经全球1.4万个径流观测站点验证,数据产品具有较优的验证精度。
林佩蓉, 潘铭, 杨媛
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
水是人类赖以生存与发展的物质基础,也是我们感知和应对气候变化的重要媒介。受独特季风气候与阶梯状地形影响,中国水资源分布极不均匀,缺水问题突出,是全球水资源极度脆弱的地区之一。人类活动与气候变化的复合作用,进一步加剧了中国水循环过程研究的复杂性。因此,迫切需要一套质量可靠、时空连续,且剔除大规模人类活动影响下的天然径流数据,为水循环研究提供本底数据支持。然而,中国现有的天然径流资料缺失率较高,参考站点密度不足,在年际和季节变化尺度上存在较大偏差,难以客观揭示大尺度径流变化的自然规律。本研究建立了一套长时序、全覆盖、高质量、时空连续的天然河川径流资料,命名为CNRD v1.0(The China Natural Runoff Dataset version 1.0)。CNRD v1.0提供1961年1月1日至2018年12月31日中国0.25°×0.25°天然径流估算量日值、月值和年值。200个有资料水文站点率定结果显示,模型参数在大多数站点得到了充分校准,模型纳什效率系数(NSE)在率定期和验证期的平均值分别为0.83和0.80。无资料流域交叉验证结果显示,MPR方法提供了最佳的区域化方案,率定期 NSE中位数为0.76,验证期NSE中位数为0.72。结果总体显示水文模型参数率定和区域化表现良好,可用于长时序径流资料重建。另外,通过与两套全球径流格点数据集ISIMIP和GRUN比较,发现CNRD v1.0数据集的径流空间分布上过渡更加连续,且在表示中国复杂地形和气候理分划下的水资源空间分布方面优于全球径流数据集。
缪驰远, 苟娇娇
本数据集为基于PEW模型的全球地表蒸散发产品, PEW模型是基于等比例假设建立的水-能平衡蒸散发模型(Proportionality hypothesis-based surface Energy-Water balance model),其原理是在Priestley Taylor(PT)蒸散发算法的基础上,耦合基于等比例假设构造的水热平衡框架。PEW模型可以同时考虑水量平衡约束和能量收支过程的影响,使得PEW模型模拟精度相较于以往的模型有一定程度的提升。PEW的输入数据包括ERA5-land数据集气象和土壤含水量变化等数据,本数据集时间跨度为1982年-2018年,时间分辨率为逐月,空间分辨率为0.1°。本数据集可为研究长时间尺度水循环和气候变化提供基础。
傅健宇, 王卫光
本数据集为过去40年黄河源和祁连山区水量平衡(降水、蒸散发、径流、土壤液态含水量)、能量平衡(短波辐射、感热、潜热和表层土壤温度)数据集。初始数据源为ERA5-Land月平均数据,通过时间聚合累积/平均到年尺度。数据的时间范围为1981-2020年,空间范围为88.5°E – 104.5°E、32°N - 43°N,空间分辨率0.1°。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
郑东海
在全球变化的大背景下,时空连续的高质量高分辨率长时间序列降水数据集对理解全球“水-碳-能”和生物地球化学的循环机制具有重要意义。研究提出的基于总量控制的日尺度融合矫正算法(Daily Total Volume Controlled Merging and Disaggregation Algorithm, DTVCMDA),有效考虑了再分析降水数据时空连续且高时空分辨率的特点,以及地面分析数据高质量的特性,制作了一套亚洲地区七十余年长时间序列高质量高时空分辨率降水数据集AERA5-Asia (0.1°, hourly, 1951-2015, Asia)。该数据集的主要特点如下:(1)AERA5-Asia是一套具有高分辨率、高质量、时空连续以及长时间序列的数据集;(2)AERA5-Asia显著优于IMERG-Final和ERA5-Land降水数据,尤其是在系统偏差方面,总体来看,AERA5-Asia、IMERG-Final和ERA5-Land相比地面观测的偏差分别为~5%,~11%和~20%;(3)在极端强降水中(如台风“潭美”和“天兔”),AERA5-Asia的质量也是显著优于ERA5-Land和IMERG-Final。 AERA5-Asia将为亚洲地区、尤其是中国区域的天气气候和水文等领域的相关研究提供稳定可靠的降水数据支撑。
马自强, 马耀明, 马伟强, 许金涛
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
东南亚国家及澜湄流域水资源模拟数据(1980-2019)是使用WRF模式输出的气象数据作为驱动数据,并通过WAYS模型模拟的结果。数据包含东南亚陆地区域1980-2019年的蒸散发、地表径流、地下径流、总径流、地下水、下渗、土壤湿度数据,时间分辨率为每日,空间分辨率为3km。数据情况整体良好,但由于模型的局限性,少部分变量模拟结果存在一定误差,不推荐对数据精度有较高要求的研究使用。数据能一定程度上反应东南亚地区水资源情况,对相关研究提供数据支持。
刘俊国
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: Distributed Time—Variant Gain Hydrological Model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上,实际蒸发模拟同气象局公开的站点观测基本一致。模型模拟出1998-2017年水循环过程,经过验证之后,给出全青藏高原空间0.01度日尺度实际蒸发(包含土壤蒸发和植物蒸腾)时空分布。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
《2015年第三极部分湖泊水体细菌后处理产品和常规水质参数》数据集收集了2015年期间青藏高原地区部分湖泊水体采样细菌分析结果和常规水质参数。通过整理归纳汇总得到2015年第三极部分湖泊水体细菌后处理产品,数据格式为excel,方便用户查看。样品由计慕侃老师采集于2015年7月1日至7月15日,包含28个湖泊(巴木错,白马纳木错,班戈错(盐湖), 班公错,崩错,别若则错,错鄂(申扎),错鄂(那曲),达瓦错,当穹错,当惹雍错,洞错,鄂雅错,公珠错,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛错,朋彦错(盐湖),蓬错,枪勇错,色林错,吴如错,物玛错,扎日南木错,扎西错),共计138个样品。其中湖泊水体细菌DNA提取方法如下:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal,序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后移除仅在数据库中出现一次的序列。常规水质检测参数包括:溶解氧、电导率、溶解性总固体、盐度、氧化还原电位、不挥发有机碳、总氮等。其中,溶解氧采用电极极谱法;电导率采用电导率仪;盐度采用盐度计;溶解性总固体采用TDS测试仪;氧化还原电位采用ORP在线分析仪;不挥发有机碳采用TOC分析仪;总氮采用分光光度法分别得到水质参数结果供参考。
叶爱中
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件