本数据为长江中下游成矿带沙溪Cu-Au矿床埃达克质岩石全岩主微量元素数据,锆石微量及U-Pb定年数据,锆石Lu-Hf同位素数据,全岩Pb同位素数据。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,锆石U-Pb定年及原位Lu-Hf同位素组成数据由LA-MC-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究沙溪铜金相关埃达克质岩的成因,与鄂东、九瑞、铜陵等其他埃达克质岩的区别。
杨晓勇
数据分为Excel表格数据以及Jpg分析图数据。表格数据包括:表1皖南地区石斑鱼样品特征;表2皖南花岗闪长岩中磷灰石的EPMA数据;表3皖南花岗闪长岩中磷灰石的LA-ICP-MS数据 研究中所研究的磷灰石是用重液法从SAP花岗闪长岩样品中分离出来的,然后在双目显微镜下手工挑选。将所选择的磷灰石安装在环氧树脂中,抛光,然后使用背散射电子(BSE)图像检查,以选择用于电子探针显微分析和LAICP-MS分析的自形靶。 磷灰石的主元素分析采用JEOL-JXA-8230M电子探针测定,试验地点为合肥工业大学资源与环境工程学院,其微量元素采用LA-ICP-MS法测定,地点位于中国科学院广州地球化学研究所矿物学与成矿重点实验室。 分析图数据包括:(1)安徽南部地区花岗闪长岩样品显微照片,显示矿物组成。(a) LQ, (b) JD, (c) QY,和(d) PL花岗闪长岩。其中:Pl = 斜长石;kf =钾长石;QZ=石英;Bi =黑云母;Hbl=角闪石;AP=磷灰石;Zrn =锆石 (2)安徽南部地区花岗闪长岩中自形磷灰石的背散射电子(BSE)图像 (3)安徽南部地区花岗闪长岩中磷灰石样品的F (wt.%)和Cl (wt.%)相关图 (4)安徽南部地区花岗闪长岩中(a)磷灰石(实心符号)和宿主岩(空心符号)球粒陨石标准化稀土模式和(b)磷灰石原始地幔标准化微量元素蜘蛛图 (5)安徽南部地区花岗闪长岩磷灰石样品地球化学图,显示岩石分类和岩浆源区特征 (6)安徽南部地区花岗闪长岩中磷灰石(实心符号)和宿主岩(空心符号)的微量元素判别图,区分埃达克岩和非埃达克岩 (7)安徽南部地区花岗闪长岩中磷灰石(a) δCe与δEu值和(b) logfO2与T 图,反映其氧逸度和温度变化。其中MH:磁铁矿-赤铁矿缓冲器,FMQ: 铁橄榄石-磁铁-石英缓冲器,IW:铁-方铁矿缓冲器 (8)安徽南部地区花岗闪长岩中磷灰石样品地球化学特征判别成矿与非矿 此数据库可以用于探究皖南地区玩中生代岩浆的多金属成矿作用与花岗闪长岩的关系,并利用磷灰石判断未矿化的岩石和矿床类型。
谢建成
数据为图片形式,内容包括:(1)安庆地区石英二长闪长岩的显微照片,显示矿物组成。其中Pl. 斜长石, Kfs. 钾长石,Hbl. 角闪石,Bi. 黑云母, Qtz. 石英 (2)安庆月山岩体锆石代表性的阴极发光照片和U-Pb和谐图。其中阴极发光图像中小实线圆代表了LA-ICPMS分析点,大虚线圆代表了LA-MC-ICPMS Hf同位素分析点。月山岩体的形成年龄为138.2± 1.7 Ma (3)安庆埃达克质岩中锆石地球化学图解,用以说明锆石稀土元素配分特征、判别锆石的分类、Zi-Hf相关关系及Ti-in-zircon温度 (4)安庆埃达克质岩岩石化学成分分类图。安庆埃达克质岩为石英二长闪长岩,是准铝质高钾钙碱性系列岩石 (5)安庆埃达克质岩哈克图解,用以主微量元素之间的相关关系 (6)安庆埃达克质岩样品球粒陨石标准化稀土元素配分图和N-MORB标准化微量元素蜘蛛图 (7)安庆埃达克质岩Nd-Sr同位素组成,落在长江中下游成矿带埃达克质岩Nd-Sr同位素组成范围,具有混合特征 (8)安庆埃达克质岩具有高放射性铅同位素组成,与MORB和长江中下游地区早白垩基性岩铅同位素组成相一致 (9)安庆侵入体的锆石εHf (t)值与U-Pb年龄图 (10)安庆埃达克质岩(a) Sr/Y与Y,(b) Sr/Y与(La/Yb)N ,(c) K2O/ Na2O与Al2O3图解,显示其为俯冲洋壳部分熔融而成 (11)安庆埃达克质岩(a) La/Yb与La, (b) V与Rb, (c) (87Sr/86Sr)i 与1/Sr(×104), (d) εNd (t)与1/Nd(×103)图解,显示为部分熔融和岩浆混合特征 (12)安庆埃达克质岩(a) Ba与Nb/Y图和(b) Rb/Y与Nb/Y图,显示明显的俯冲印记 (13)安庆埃达克质岩锆石lgfO2与T(ºC)图。安庆埃达克质岩具有高氧逸度和较高温度。其中MH:磁铁矿-赤铁矿缓冲器,FMQ: 铁橄榄石-磁铁-石英缓冲器,IW:铁-方铁矿缓冲器 (14)安庆铜金埃达克质岩石成因模式示意图。安庆埃达克岩主要来源于俯冲洋壳的部分熔融,幔源岩浆的加入以及侵位过程中新元古代地壳物质的同化作用。 通过以上数据可以探究埃达克岩对成岩成矿作用的影响作用,并对安庆地区的成矿运动过程作出解释。
谢建成
数据库内容包括:表1安庆地区埃达克质岩石LA-ICP-MS锆石分析数据;表2安庆埃达克质岩锆石原位微量元素数据;表3安庆地区埃达克质岩石的常量和微量元素组成;表4安庆地区埃达克岩的Nd、Sr、Pb同位素组成;表5安庆地区埃达克质岩石LA-MC-ICP-MS锆石Hf同位素组成。 U-Pb定年和微量元素通过LA-ICP-MS进行分析,分析地点位于合肥工业大学资源与环境工程学院。主量和微量元素的分析位于广州ALS实验室集团(一个商业ICP-MS分析实验室)进行,实验方法是ICP-MS。Rb、Sr、Sm和Nd同位素数据在中国科学技术大学化学地球动力学实验室用MAT-262质谱仪测定。 通过以上数据可以探究埃达克岩对成岩成矿作用的影响作用,并对安庆地区的成矿运动过程作出解释。
谢建成
数据为jpg图片形式,内容包括:(1)宝山陶和凤凰山矽卡岩铜(金)矿床黄铁矿样品中(a)Fe与S,(b)Cu与Fe的二元曲线 (2)宝山陶和凤凰山矽卡岩铜(金)矿床黄铁矿样品的微量元素含量 (3)凤凰山矽卡岩铜(金)矿床黄铜矿中微量元素的含量 (4)宝山陶和凤凰山矽卡岩型铜(金)矿床不同阶段黄铁矿和黄铜矿样品中(a)Au、(b)Ag、(c)Pb和(d)Sb的含量与As的关系 (5)宝山陶和凤凰山矽卡岩铜(金)矿床中黄铁矿和黄铜矿样品的(a)Pb与Bi、(b)Pb/Co与Ag/Co、(c)Au与Cu、(d)Sb与Tl曲线 (6)凤凰山矿床中Se-Sn和Co-As的黄铜矿LA-ICP-MS微量元素关联 (7)宝山陶和凤凰山矿床黄铁矿和黄铜矿样品的(a)Co与Ni、(b)Se与As、(c)Au与Ni曲线图 本数据图表为研究铜陵凤凰山矿田矽卡岩铜(金)矿床硫化物矿物特征提供直观结果。 文章已发表与sci期刊,数据真实可靠。
谢建成
数据内容包括:(1)(a) 中国构造示意图;(b)中国东部铜陵成矿区地质示意图 (2)凤凰山矿田地质图,显示了新五里花岗岩侵入体和相关的铜(金)矿床. (3)凤凰山矿田铁山头至宝山头剖面图 (4)宝山岛矽卡岩型铜(金)矿床地质剖面,显示石英二长闪长岩与下三叠统碳酸盐岩接触带矽卡岩成矿作用。缩写:Grt:石榴石;Di:透辉石;Py:黄铁矿;Ccp:黄铜矿;Cal:方解石 (5)凤凰山地区矽卡岩矿床的矽卡岩、矿石和花岗闪长岩矿物显微照片。(a) 石榴石矽卡岩;(b)和(c)中粗粒黄铁矿和脉状黄铜矿与石英共存,石英硫化物阶段的异面体磁铁矿颗粒被石英或黄铜矿充填;(d)新五里花岗闪长岩。缩写:Grt:石榴石;Chl:绿泥石;Mga:磁性磁铁矿;Py:黄铁矿;Ccp:黄铜矿;QZ:石英;Kfs:钾长石;Hbl:角闪石;Bi:黑云母
谢建成
数据内容包括:表1宝山岛和凤凰山矿床黄铁矿和黄铜矿的电子探针数据;表2宝山岛和凤凰山矿床黄铁矿的LA-ICP-MS微量元素数据;表3凤凰山矿床黄铜矿LA-ICP-MS微量元素数据; 黄铁矿和黄铜矿的元素组成通过合肥工业大学资源与环境工程学院JEOL-JXA-8230M电子探针测算,总共分析50个分析点,分析条件为加速电压15kv,探针电流20na,峰值直径5nmμm。黄铁矿和黄铜矿单晶的微量元素组成通过中国科学院广州地球化学研究所同位素地球化学国家重点实验室的共振193nm ArF准分子激光和Agilent 7500a ICP-MS仪器测定,总共分析150个点。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
数据内容存放于3个Excel表格中,分别是:表1铜陵地区典型矽卡岩铜金多金属矿床特征,表2凤凰山矿田代表性铜(金)矿床特征;表3凤凰山和宝山岛矿床各成矿阶段的主要特征、黄铁矿和黄铜矿类型、黄铁矿和黄铜矿结构汇总表。其中表1对铜陵地区典型矽卡岩铜金多金属矿床的前人研究成果进行了总结整理。表二对凤凰山矿田代表性铜(金)矿床特征进行梳理,凤凰山地区矽卡岩矿床主要为中小型矿床,铜储量约60万吨。表三对凤凰山和宝山岛地区矿床成矿阶段特征进行梳理,矽卡岩阶段主要由石榴石和透辉石以及少量硅灰石、阳起石、绿泥石、绿帘石、磁铁矿、黄铁矿和黄铜矿组成。三个表格对前人研究进行总结归纳,为铜陵及凤凰山地区矽卡岩矿床日后的研究提供铺垫。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
数据内容包括:对池州地区铜钼多金属花岗闪长岩(斑岩)形成的地球动力学演化模式简述。图中分别画出150Ma之前及150Ma之后在池州地区地质构造发生的变化,以及对成矿模式的影响方式变化。池州地区150 Ma时受到古太平洋板块倒转的影响,形成无海洋沉积物的弧内裂谷环境。板块释放的流体使地幔楔体物质熔融,产生了高氧逸度环境,形成了富氯流体和混合的幔壳岩浆,促进了金属的提取和运移,最终形成了池州地区的铜钼多金属矿床。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以jpg格式储存。
谢建成
数据内容包括:(1)池州地区四个侵入体代表性锆石颗粒的锆石U-Pb协和图、加权平均年龄和阴极发光(CL)图像。CL图像中的小实心圆代表LA-MC-ICP-MS Hf同位素分析的斑点;大点圆代表LAICP-MS分析的斑点。 (2)池州花岗闪长岩(斑岩)磷灰石样品地球化学图。(a) Cl与F图;(b)球粒陨石标准化REE图;(c)Y与Sr图;(d)稀土元素三角图。注:M,地幔;M-C,地幔-地壳;C,地壳 (3)池州花岗闪长岩(斑岩)岩石化学成分分类图。(a) 总碱与二氧化硅(TAS)图。(b) A/NK与A/CNK的对比图。(c) A.R.-SiO2图,A.R.=(Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO–Na2O–K2O)。实线表示钙碱性、碱性和过碱性之间的划分。(d) K2O与SiO2的对比图 (4)(a) 池州花岗闪长岩(斑岩)样品的Al2O3与SiO2的关系曲线,(b)MgO与SiO2的关系曲线,(c)Zr与SiO2的关系曲线,(d)Nb与SiO2的关系曲线,(e)Sr与SiO2的关系曲线,(f)Sr/Y与Y的关系曲线 (5)池州花岗闪长岩(斑岩)样品的球粒陨石标准化稀土模式和原始地幔标准化微量元素蜘蛛图 (6)池州地区侵入岩Nd-Sr同位素图 (7)池州侵入体锆石的U-Pb年龄图 (8)(a)锆石样品的lgfO2与T(℃)和(b)锆石样品的Ce4+/Ce3±值与Eu/Eu*值,(C)池州侵入岩磷灰石样品的logfO2与δEu的曲线图。MH:磁铁矿-赤铁矿缓冲液,FMQ: 铁橄榄石-磁铁-石英缓冲液,IW:铁-浮体缓冲液 (9)池州花岗闪长岩(斑岩)样品的(a)Ta/Sm与Ta、(b)V与Rb、(c)La/Yb与SiO2的关系曲线。注:PM部分熔融,FC分离结晶
谢建成
池州地区花岗闪长岩(斑岩)和辉钼矿矿物显微照片包括:牌楼花岗闪长岩,麻石花岗闪长岩(斑岩),西山花岗闪长岩,马头矿床辉钼矿。 池州地区花岗闪长岩(斑岩)呈灰白色,呈粒状(斑岩)结构,块状构造。它们主要由石英(20–25%)、钾长石(20–25%)、斜长石(40–45%)、角闪石组成(∼5%),黑云母(∼10%),以及锆石和磷灰石等辅助矿物(图5a-d)。辉钼矿以自形-二面体结构为特征,在石英脉中呈脉状、浸染状和结节状产出。
谢建成
内容包括: 牌楼钼金多金属矿床地质图,牌楼钼金多金属矿床7号勘探线剖面图,马市铜矿地质图,马市铜矿4号勘探线剖面图,马头铜钼矿床地质图。 牌楼矿床有10个金矿体和7个钼矿带。单个金矿体的长度和厚度为数十米和0.28–4.00米。牌楼矿床的金品位为1.19–22.0 g/t。钼矿体长400~600m,厚1.50~6.50m,主要赋存于与围岩接触带附近的花岗闪长岩(斑岩)和角岩中。钼的平均品位为0.04–0.13 wt%。牌楼矿床矿石主要为黄铁矿、辉钼矿和浸染矿。矿石矿物主要由辉钼矿、黄铁矿、辉锑矿及少量磁黄铁矿组成。脉石矿物主要为石英、长石、绢云母和绿泥石。 马石地区铜矿床有几十个铜矿体,铜品位为0.21–0.34 wt%。在花岗闪长岩(斑岩)和隐爆角砾岩中发现了长度和厚度分别为330-600m和20-50m的铜矿体。马石矿床蚀变类型主要为硅化、绢云母化和黄铁矿化。马头钼铜矿床为中型斑岩型矿床,钼储量6万t,铜资源量>10万t。马头矿床蚀变类型主要为硅化、绢云母化和钾长石化。马头矿床矿石主要为黄铜矿、辉钼矿石英脉型矿石和浸染型矿石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以jpg形式储存。
谢建成
此数据包括三个示意图:(a)中国构造示意图(b) 长江中下游成矿带晚中生代主要岩浆岩及相关矿床分布地质示意图(c) 中国东部池州矿区地质示意图。 图中信息包括地区断层分布状态,研究区域位置,斑岩型层控铜金钼矿床,矽卡岩型铁铜矿床,磁铁矿磷灰石矿床,A型花岗岩带,白垩纪火山岩和次火山岩,晚中生代花岗闪长岩及花岗岩。通过对图中分布在东六马鞍山断裂带和高滩断裂带的铜钼多金属矿床进行系统的地质年代学和地球化学分析,对制约池州地区铜钼多金属矿床的形成和花岗闪长岩(斑岩)的成因进行了深入研究。 以上数据以发表于SCI期刊,数据真实可靠。数据以jpg形式储存。
谢建成
数据内容包括池州铜钼矿床辉钼矿的Re-Os同位素年龄. 试验地点位于中国地质科学院北京地质分析中心稀土Re-Os实验室,试验设备通过TJAX系列ICP-MS测定了辉钼矿的稀土Re-Os同位素组成。 Re-Os同位素年龄实验特性:每个年龄测定的不确定度约为1.5%,包括187Re衰变常数的不确定度、同位素比值测量的不确定度和尖峰标定。衰变常数为λ (187Re)=1.666×10-11 year−1。根据以上规则形成最终年代学数据。 以上数据已发表于SC期刊,数据真实可靠。上传数据为Excel表格格式。
谢建成
数据内容包括池州地区花岗闪长岩(斑岩)的Nd、Sr同位素组成及其LA-MC-ICP-MS锆石Hf同位素组成。 Rb-Sr和Sm-Nd同位素数据测算地点位于中国科学技术大学放射成因同位素地球化学实验室,使用仪器为Finnigan-MAT-262热电离质谱仪。 锆石的Lu-Hf同位素组成测算地点位于南京大学矿床研究国家重点实验室,利用海王星多采集器ICP-MS(LA-MC-ICP-MS)上的193nm激光进行测算。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据通过Excel表格上传。
谢建成
在池州地区,对样品花岗闪长岩(斑岩)全岩进行分析,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 全岩主微量元素试验地点是位于中国科学院广州ALS实验室组,主量元素采取X射线荧光法测算,微量元素及稀土元素采用ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
本数据为长江中下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb-O同位素及测年数据和磷灰石原位主、微量元素地球化学数据。样品为采自青阳-九华山地区的I型和A型花岗岩,岩性包括花岗斑岩、花岗闪长岩、碱性花岗岩和二长花岗岩,以及其中的暗色包体。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究庆阳-九华山杂岩体的成因和演化过程,约束岩浆形成过程的物理化学条件,制约其形成的构造环境。
江小燕
表格内容包括池州地区花岗闪长岩(斑岩)的锆石年代学及微量元素地球化学数据分析结果等信息。实验方法是LA-ICP-MS。利用合肥工业大学资源与环境工程学院的agilent7500a-ICP-MS仪器和compexpro102193nm波长ArF准分子激光源,对锆石的U-Pb同位素组成进行了分析。分析使用了80mj的激光能量和6hz的重复频率,频率为32μm光斑大小和50秒消融时间。锆石同位素比值用icpmsdatacalv计算。此数据可为池州地区花岗闪长岩(斑岩)日后地球化学模型分析提供数据支持。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本表格内容主要对池州地区花岗闪长岩(斑岩)样品特征进行描述,表格元素包括岩体名称、采样位置、岩石类型、结构、主要矿物、相关矿床年龄研究方法、岩石年龄数据等相关数据。通过对前人学者的研究总结,对于相关岩石年代研究方法包括LA-ICP-MS、SIMS、SHRIMP等,池州地区花岗闪长岩(斑岩)样品年龄主要处于139.6±2.1至149.4±1.2之间。岩石的主要矿物组成为20-30%石英,20-25%钾长石,35-40%斜长石,10%黑云母,5%角闪石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本数据为长江下游A型花岗岩的全岩主、微量元素、Nd同位素地球化学数据,以及锆石原位Hf-O同位素数据和磷灰石主、微量元素地球化学数据。样品为采自安徽花园巩岩体的正长花岗岩和石英正长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Nd同位素组成数据由MC-ICP-MS分析获得。锆石原位O同位素组成由SIMS分析获得,锆石原位Lu-Hf同位素组成的测试选择与O同位素相同的位置点进行,数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究A1和A2型花岗岩共存的成因,以及中生代晚期长江中下游地区A型花岗岩形成的构造环境。
江小燕
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件