数据内容主要包括喜马拉雅造山带岩浆岩全岩的主微量数据。样品分布地区主要有吉隆,薄绒,夏如,拉轨岗日,亚东,雅拉香波和南迦巴瓦等地区。岩石样品重点为新生代淡色花岗岩,还包括古生代花岗岩和白垩纪辉绿岩,共408件。喜马拉雅造山带广泛发育淡色花岗岩,是S型花岗岩的典型代表,被写进岩石学教科书。最近在喜马拉雅淡色花岗岩中发现Nb、 Ta、 Li、Be等关键金属元素,稀有金属成矿潜力大。 因此,深入了解喜马拉雅淡色花岗岩的岩石和地球化学特征及其形成机制不仅对于理解喜马拉雅造山带本身,而且对于限定世界上其他碰撞造山带的淡色花岗岩的形成机理,深部动力学过程和成矿潜力都具有重要意义。但是,要深入理解新生代以来喜马拉雅造山带的构造演化过程及其环境资源效应,需要深入了解碰撞前喜马拉雅地体可能经历过的构造作用,需要进一步确定喜马拉雅造山带的物质组成。古生代花岗岩和白垩纪辉绿岩是喜马拉雅造山带重要的岩石组成,是探讨碰撞前喜马拉雅地体可能经历过的构造作用的探针。矿物组成和地球化学特征表明古生代花岗岩为过铝质高K/Na 花岗岩,与新生代淡色花岗岩相比,具有较高的 FeO和 MgO,较低的Al2O3;具有低的 CaO/(MgO+FeO*+TiO2)比值,落入A型花岗岩,形成于伸展背景下变泥质岩的部分熔融作用,并具有地幔物质的加入。区域数据主要来自已经发表的文章或正在接受。主量元素测试采用XRF光谱方法,微量测试采用ICP-MS。数据质量高度可信,测试单位包括中国地质科学院国家实验测试中心等。数据发表在高级别期刊,包括《Lithos》、《岩石学报》等。
曾令森, 高利娥, 严立龙
本数据包括岩石全岩主微量地球化学数据,锂辉石的主微量元素数据,透锂长石、铌铁矿族矿物的主量元素数据,铌铁矿族矿物和锡石放射性同位素测年数据。样品采集自西藏中部的普士拉淡色花岗岩岩体。岩石全岩主量地球化学数据通过X荧光光谱仪分析获得,微量元素通过电感耦合等离子体质谱仪分析获得,矿物主量元素数据通过电子探针分析获得,矿物微量元素数据以及铌铁矿族矿物和锡石的放射性同位素测年通过激光剥蚀电感耦合等离子体质谱仪分析获得。通过获得的数据,可以确定普士拉淡色花岗岩体的锂成矿特征,赋存于锂辉石(-透锂长石)型伟晶岩;另外,通过数据可以限定锂成矿伟晶岩形成时代为中新世(~ 25–23 Ma)。
刘晨
此数据集包括全岩主微量、同位素地球化学数据,独居石和锆石放射性同位素测年数据。样品采集自西藏南部喜马拉雅造山带拉轨岗日穹隆。岩石全岩主量元素地球化学数据通过X荧光光谱仪分析获得,微量元素通过电感耦合等离子体质谱仪分析获得,独居石和锆石放射性同位素测年通过激光剥蚀电感耦合等离子体质谱仪分析获得,数据质量高。这些数据表明喜马拉雅造山带中淡色花岗岩浆形成于多个阶段,且来自于不同源区,为岩浆形成机制提供了关键限定。
刘小驰
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件