通过资料整理和数字化,基于ArcGIS平台,广泛收集南亚地区最新的活动断裂和地震构造研究资料,编制了南亚地区地震构造图和地震区划图。图件范围包括印度、巴基斯坦、尼泊尔、不丹、孟加拉国和斯里兰卡。地震构造图中标绘了发震断层(活动断层)的位置、活动性质和断层名称,以及1960年至2021年5级以上地震的震中位置。区划图中以未来50年超越概率10%的地震动加速率峰值(PGA)为指标,进行地震危险性分区。这些图件可用于南亚地区的活动构造和地震灾害研究,为南亚地区的大型工程与基础设施建设提供地震安全保障。
程理
此数据包含1992年-2020年时间段的中亚,南亚和中南半岛地区的空间分辨率为300m土地覆盖数据,包含10个一级类别,由原数据的二级类别合并而来。数据基于欧空局的1992年-2020年时间段地表覆盖产品 CCI-LC,对耕地、建设用地和水体等地类进行修正。基于清华大学全球土地覆被数据(FROM-GLC,30m栅格)、美国NASA的MODIS全球土地覆被数据(MCD12Q1,500m栅格)、美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本全球林地数据的(PALSAR/PALSAR-2,25m)的一致区获取训练样本,应用谷歌地球数字引擎及其随机森林算法,对研究区待修正区域进行机器判别,获得修正的土地覆被产品。应用2019年和2020年的谷歌地球高清影像,对耕地、建设用地和水体变化区域的精度进行分层随机抽样验证,三种地类分别抽取了1200个、共计3600个,相比 CCI-LC数据,本修正产品在该变化区域的精度提升了11%到26%。
许尔琪
1)本数据包含中科院加德满都科教中心2019年基本气象数据;参数有:气温 ℃,相对湿度%,气压Kpa, 降水mm, 辐射W/m2, 风速 m/s。表2为气象站说明表格,包含地理位置及下垫面情况。 2)数据来源及加工方法:数据来源于中国科学院加德满都科教中心小时数据,气温、气压、辐射和风速计算日平均,降雨计算日总和。 3)数据质量描述:这些参数中,气压数据质量较差缺失较多,2019年6-8月仪器故障,数据有缺失 4)该气象数据应用前景广泛,与南亚不同区域的资料对比分析,可服务于如大气科学、水文学、气候学、自然地理学和生态学等背景的研究生和科学家。
朱立平
海陆热力差异是形成季风的重要原因,印度夏季风的建立与欧亚大陆和印度洋之间产生的海陆热力差异有关。对流层中高层青藏高原和热带印度洋的热力差异与印度夏季风的爆发及其年际和年代际变化紧密相关。青藏高原和热带东印度洋上空温度是对印度夏季风变化最敏感的两个区域,基于此,用500-200hPa温度场定义了一个青藏高原与印度洋热力差异指数: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] 其中,Nor表示标准化,T表示500hPa-200hPa温度场。 青藏高原与印度洋热力差异指数(TCI)分为逐候、月、夏季3种时间分辨率序列。它可以从多种时间尺度反映高原与北印度洋之间的热力差异及其与后期印度夏季风变率的关系。并且,与单独的青藏高原或印度洋热力状况相比,该指数表现得更好,指数大时,后期印度夏季风强度往往偏强。另外,TCI的逐候增量对印度季风的演变具有预测意义,TCI逐候增量超前印度季风指数3候开始显著相关,且超前15候的时候相关最大。同时,TCI逐候增量前25候平均值的大小对印度季风爆发的早晚有一定的预报意义。 资助项目: 中国科学院战略性先导科技专项泛第三极环境变化与绿色丝绸之路建设(XDA20060501 印度洋-第三极热力差异对季风的影响及其经向输送效应)
李张群, 肖子牛, 赵亮
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件