全球年度湖泊冰物候数据集包括北半球74245个湖泊的冻结日期和破裂日期。数据集分为三部分: 1:当前时间段数据,通过DLRM模型(提供了参数)从MODIS产品中获得,涵盖2001年至2020年74245个湖泊的冻融时间; 2-3: 历史(2)和未来(3)两个时间段湖泊冻融模拟,分别从1861-2005年和2006-2099年的基于温度的湖泊特定模型中获得(详见论文)。历史和未来的模拟仅针对30063个满足模型条件的湖泊。
王欣驰
北半球过去千年温度代用资料序列,总计396条,其中:370树轮、15条冰芯、9条湖泊沉积物、2条历史文献资料;该资料来源于PAGES2k Consoritum组织在2017年发布的全球温度代用资料数据集;在开展北半球过去千年(1000-2000 AD)温度同化的过程中对该资料进行了进一步的筛选,只保留了年分辨率的资料;该数据集中所包含的代用资料都已经经过了严格的质量检验和温度信号的验证;该数据集可用于北半球过去千年半球尺度和区域尺度温度重建。
方苗
多年冻土区的季节融化层,即活动层,是季节冻土研究中重要组成部分,其变化也深受气候变化的影响。活动层厚度变化深刻影响地~气之间能量传递、水分循环、碳循环、以及地表和地下水文过程、和植被生长。作者通过收集北半球347个站点的长时间序列活动层厚度,同时几十个CMIP5输出的气温资料,通过Stefan方程,构建北半球多年冻土区E-factor;最后耦合融化指数获取了北半球多年冻土区活动层厚度的空间分布及不同气候情景下的未来预测。经检验发现,观测值与模拟值具有显著的相关性,相关系数R=0.84(P<0.01),平均百分比误差为4.7%,平均偏离误差为-11.7 cm,均方根误差为64 cm。该数据产品可以用于冻土与气候变化、冻土碳循环、冻土生态水文过程、冻土工程等相关研究。
彭小清
(1)数据内容:1500-2000年年平均的北半球环状模指数和南半球环状模指数;(2)数据来源及加工方法:该数据由作者自主生产,基于PAGES2k代用资料数据集,利用机器学习模型(随机森林、极端随机树、轻量梯度提升机、CatBoost)重建而产生。(3)数据质量描述:该数据集与多个器测数据在器测时段内有较高的一致性,重建效果更好。数据可用于研究多时间尺度(年际、年代际、多年代际)上南北半球主要大气环流的变化规律及机理。
杨佼
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
李兴东, 龙笛, 黄琦, 赵凡玉
在地球大数据科学工程专项时空三极环境项目第一课题“三极大数据共享与集成” (XDA19070100)资助下,中国科学院西北生态环境资源研究院车涛课题组利用机器学习方法结合多源雪深产品数据、环境因子变量及地面观测雪深数据等制备了北半球长时间序列逐日雪深数据集。 首先将人工神经网络、支持向量机和随机森林方法在积雪深度融合的适用性进行对比研究,发现随机森林方法在雪深数据融合上表现出较强优势。其次,利用随机森林方法,结合AMSR-E,AMSR2,NHSD和GlobSnow等遥感雪深产品及ERA-Interim和MERRA2等再分析资料格网雪深产品和环境因子变量等作为模型的输入自变量,用中国气象台站数据(945)、俄罗斯气象台站(620)、俄罗斯积雪调查数据(514)和全球历史气象网络逐日数据(41261)等43340个地面观测站点的雪深数据作为参考真值对模型训练与验证,在专项“地球大数据科学工程”提供的云平台上制备1980~2019年积雪水文年(上一年9月1日至本年度5月31日)的逐日格网雪深数据集。由于1980~1987年微波亮温数据为隔日数据,所以这段时间的数据会出现少量条带缺失现象。利用全球积雪模型对比计划及独立的地面观测数据进行验证,融合数据集的质量在整体上有所提升。利用地面观测数据及融合前的雪深产品对比来看,融合数据的决定系数(R2)从6种融合前产品中最高的0.23(GlobSnow雪深产品)提升至0.81,而相应的均方根误差(RMSE)和平均绝对误差(MAE)也减小至7.7 cm 和2.7 cm。
车涛, 胡艳兴, 戴礼云, 肖林
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
北半球过去千年(1000-2000 AD)、年分辨率、2°空间分辨率气温场数据集(距平值)。本数据集通过古气候数据同化方法产生,同化的模型算子是MPI-ESM-P,观测数据为396条年分辨率的代用资料,同化方法为集合平方根滤波算法(EnSRF)。同化重建的气温场和气温观测资料、代用资料重建的气温具有很好的一致性(平均相关系数>0.6, p-value < 0.01)。数据可为研究过去千年北半球尺度和区域尺度气温变化提供高质量的基础数据。
方苗, 李新, CHEN Hans W., CHEN Deliang
为了了解北半球气温变化的时空变化特征,该研究用 CRU(Climatic Research Unit)网格数据计算了 30 年(1971-2000)年平均气温的空间分布。年平均气温随着纬度的升高而降低,变化范围从大于 30 °C 到小于-25 °C。在相同纬度地区,高海拔地区(比如青藏高原、蒙古高原和西西伯利亚山区)的年平均气温凸显低温的趋势。同时我们完成了分辨率为0.5 °× 0.5 °北半球1901-2016年间的年平均气温变化趋势分布图。
尹国安, 石亚亚
湖冰物候是描述湖冰覆盖的季节性循环特征,湖冰物候的变化是碳、水和能量过程研究中的重要内容,也是气候变化的敏感因子之一。本数据集是基于被动微波反演的湖冰物候,包含青藏高原与北半球高纬度地区200个湖泊2002-2018年的湖冰物候(含湖泊开始冻结日期、完全冻结日期、开始融化日期、完全融化日期),部分湖泊可以延伸至1978年。该数据与同时期MODIS监测结果验证表明二者的判读误差为2-4天。用户可利用此数据开展北半球气候变化研究。
邱玉宝
利用MOD10A1和MYD10A1逐日积雪产品和AMSR-E雪水当量产品(2000.02.25-2002.08.31、2011.08.31-2016.12.31均采用IMS雪冰产品代替AMSR-E雪水当量产品)作为输入,采用MODIS上下午星积雪产品合成、临近日合成、MODIS和AMSR-E/IMS积雪产品合成方法,逐步消除云的干扰,最终得到北半球每日无云积雪图像。 数据集采用Albers(阿尔伯斯等积)投影方式,空间分辨率500m。
戴礼云
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件