土壤水分是全球观测系统提出的关键气候变量之一,在陆气相互作用中起着重要作用。植被光学厚度是微波辐射传输过程中衡量植被衰减特性的关键参数,在植被水力学、植被物候学和生物量研究领域中有着广泛应用。 本数据集基于AMSR-E和AMSR2交叉定标亮度温度数据,使用多通道协同反演算法(MCCA)获得了全球第一套具有极化差异的多波段(C/X/Ku)植被光学厚度产品及土壤水分产品。该算法(MCCA)能综合考虑多个通道之间的物理关系,能同时反演出土壤水分和具有频率差异,极化差异的植被光学厚度。 本数据集使用了来自国际土壤水分观测网络和美国农业部发布的共25个土壤水分密集观测站网进行验证,结果表明,在目前公开的与AMSR-E/2相关的土壤水分数据集中,MCCA土壤水分的无偏均方根误差(ubRMSE)最小。此外,MCCA反演得到的具有频率和极化差异的植被光学厚度数据可为植被生理过程中的水通量研究提供新的见解。
胡路, 赵天杰, 居为民, 彭志晴, 姚盼盼, 施建成
土壤水分是地气交互作用的重要边界条件,是全球观测系统提出的关键气候变量之一;植被光学厚度是微波辐射传输过程中衡量植被衰减特性的物理量,在表征植被水分与生物量动态变化中具有重要作用。 本数据集使用多通道协同反演算法获取SMAP观测的土壤水分与植被光学厚度。该算法利用参数间的自约束关系与通道间的理论转换关系进行地表参数反演,反演过程不依赖于其他辅助数据,并适用于多种不同载荷配置。本数据集的土壤水分反演结果包含了融化期的土壤水分含量与冻结期的液态水含量;同时反演了水平和垂直两个极化的植被光学厚度,是全球第一套具有极化差异的L波段植被光学厚度产品。 本数据集基于国际土壤水分观测网络、美国农业部及研究室自建发布的共19个土壤水分密集观测站网(其中包含9个SMAP核心验证站点以及SMAP尚未使用的10个密集观测站点)以及被广泛使用的土壤气候分析网络SCAN进行验证,结果发现MCCA土壤水分反演结果精度优于其它SMAP产品。
赵天杰, 彭志晴, 姚盼盼, 施建成
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
陆姣, 王国杰, 陈铁喜, 李世杰, Daniel Fiifi Tawia Hagan, Giri Kattel, 彭建, 姜彤, 苏布达
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
本数据集为1948-2018 干旱指数AI年数据集,空间覆盖范围为60S-60N,180E-180W,空间分辨率为0.5°,时间分辨率为逐年。其基于Penman–Monteith model 计算潜在蒸散发(PET),其中用到的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据来自于GLDAS,气温数据来自CPC,降水数据也来自于CPC。GLDAS资料分为两段,第一段来自于GLDAS_NOAH10_M V2.0系列,覆盖时间段为1948-2015年;第二段来自于GLDAS_NOAH10_M V2.1,覆盖时间段为2000-至今,我们利用2000-2014年的重合数据段进行拼接,将这一时期两套数据的风速、相对湿度、感热、潜热、土壤热通量、地表气压数据平均值相减,得到差值,将差值加到V2.1的数据集中,从而计算PET。
于海鹏
该数据集是利用气候模型COSMOS运行的,37.5-32kaBP轨道变化瞬变试验TRN40ka,来自Zhang et al(2021, Nature Geoscience,https://www.nature.com/articles/s41561-021-00846-6)。 具体的试验设计请参考原文献。 COSMOS(ECHAM5-JSBACH-MPI-OM)是德国马普所研发的海洋大气植被耦合气候模型。大气-陆面模块ECHAM5-JSBACH的空间分辨率为T31(∼3.75°),垂直19层;海洋模块MPI-OM是不规则网格,水平分辨率为 (3°×1.8°) ,垂直40层。
张旭
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
植被光合作用是陆地生态系统碳循环的关键组成部分,模拟不同时空尺度上的光合作用活动有助于解决陆地碳收支的难题,也是准确预测未来气候变化方向的重要途径和科学认识陆地生态系统对人类社会可持续发展支持能力的重要前提。目前,虽然多种估算生态系统总初级生产力(GPP)的算法和产品已经相对较为成熟,但是长时间序列的全球GPP产品仍存在较大的差异和不确定性,尤其是其时间变化趋势。日光诱导叶绿素荧光(SIF)遥感是近年快速发展起来的新型遥感技术,SIF与光合过程的紧密联系使得其成为指示植被光合变化的有效探针,也是监测GPP强有力的手段。基于遥感数据获取的一种新型植被指数(NIRv),即归一化植被指数NDVI与近红外波段反射率的乘积,与遥感SIF产品高度相关;基于机理推导、模型模拟和遥感数据的分析结果均显示,NIRv可以作为SIF的替代产品,用于估算全球GPP。 因此,在分析了NIRv作为SIF和GPP探针的可行性基础上,本数据集基于长达40年左右的遥感AVHRR数据和全球数百个通量站点观测,生成了1982-2018年的全球高分辨率长时间序列GP数据,并分析了全球GPP的时空变化趋势,其分辨率为月,0.05度,数据单位为gC m-2 d-1,多年平均的全球GPP大约为128.3 ± 4.0 Pg C yr−1,基于地面通量站点的检验结果表明该数据的均方根误差(RMSE)为1.95 gC m-2 d-1。该数据集可用于全球气候变化和碳循环的相关研究。
王松寒, 张永光
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。全球陆表实际蒸散发数据集(2013-2014) (ETMonitor-GlobalET-2013-2014) 是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到。输入数据主要采用的遥感数据包括国家重大科学研究计划(973)项目“全球陆表能量与水分交换过程及其对全球变化作用的卫星观测与模拟研究”(2015CB953700)提供的较高空间分辨率的陆表净辐射和较高时间分辨率的水体等数据集,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐日蒸散发量。计算在1km分辨率上开展,最终聚合到5km分辨率。利用FLUXNET地面观测数据进行直接验证,估算结果与地面实测数据一致性较好。该数据集覆盖全球,空间分辨率为5公里,时间步长为每天,单位为mm/d,数据类型为整型,缩放系数为0.1。
郑超磊, 贾立, 胡光成
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E、AMSR2被动微波亮温数据,以及MODIS光学遥感数据,利用冻融判别式算法和冻融降尺度算法制备的全球近地表冻融状态(空间分辨率:0.05°;时间跨度:2002-2017年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰, 张子谦
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件