《中国数字山地图》的数据从宏观尺度刻画中国山地空间格局和复杂形态特征,其中包含我国山地分布、山地分类、形态要素与山地面积比例等信息,是山地区划、山地成因分类及资源环境关联分析的基础数据。 山地承载着巨大的自然资源供给、生态服务与调节功能,在我国生态文明建设和社会经济发展中有着重要的地位和作用。前期,中国科学院、水利部成都山地灾害与环境研究所的李爱农研究员等,在中国山地空间范围定量界定、山地起伏度计算尺度分析及地形自适应算法、山地综合制图等研究的基础上,形成了“中国数字山地图”数据集,具体包括: (1)中国山地空间范围数据,(2)中国山地类型数据,(3)山脉数据(山脉走向、等级与山脊形态),(4)山峰数据,(5)山地面积按一级行政区统计表,(6)中国地势等高面数据,(7)山地形成类型分区数据,(8)中国山地分区数据,(9)主要山峰列表。山地空间界定范围与分类的原始DEM空间分辨率约90m,数据边界已套合中高分辨遥感影像做必要的修订,与山地地形晕渲图有良好的空间一致性;山脉走向与山地散列要素的制图综合精度为1∶100万,为定性的辅助数据。该数据集将山地从地貌制图中单独列出,具有更高的空间分辨率和针对性,可为山地环境及山地灾害地带性研究、山区国土空间分析等提供可靠的本底数据,服务于我国面向山区的宏观决策。
南希, 李爱农, 邓伟
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
青藏高原及周边地区孕灾、致灾、承灾数据集包含了地貌数据、归一化植被指数数据、年均气温与降雨数据、承灾价值等级数据,覆盖656万平方公里的范围。该数据集主要是为了进行灾害、风险评价而准备。由于覆盖范围巨大,地貌数据采用了150m空间分辨率,其他数据采用了1000m空间分辨率。地貌、植被指数、气温降雨数据主要通过加工开源数据生产,承灾价值等级数据为叠加计算生产,综合考虑了人口数据、夜间灯光指数、建筑物、地表覆被类型。
唐晨晓
青藏高原及其邻区的新生代地层中蕴含丰富的构造、环境、气候等信息,对揭示高原碰撞隆升变形历史及其气候环境效应等具有重要意义。本数据集对来自青藏高原及其邻区的临夏盆地、伦坡拉盆地、剑川盆地、曲靖盆地和思茅盆地的新生代地层,开展了系统野外地质考察,确定了一些出露发育良好的研究剖面。依靠GPS、地质罗盘等工具,对相关研究剖面进行了构造、地貌、岩性等方面的调查测量描述,并进行了相关图件的绘制,具体涉及:临夏盆地对康剖面90 m黄土沉积地层,伦坡拉盆地达玉剖面1890 m、剑川盆地双河剖面300 m、曲靖盆地蔡家冲剖面252 m的河湖相沉积地层,以及思茅盆地江城剖面932 m的咸水湖相夹膏盐沉积地层。本数据集为后续开展相关地层年代学、构造演化、气候环境等研究奠定了坚实的地质学基础。
方小敏, 颜茂都, 张伟林, 张大文
乌郁盆地位于青藏高原南部冈底斯山脉南麓,南邻雅鲁藏布江,是研究青藏高原南部新生代构造活动历史的理想地区。乌郁盆地由下向上依次出露古新世-始新世林子宗群火山岩、渐新世日贡拉组火山岩、中新世芒乡组湖相地层和来庆组火山岩、晚中新世-上新世乌郁组和更新世达孜组。利用LA-ICP-MS共测得5件乌郁盆地芒乡组、乌郁组和达孜组地层砂岩和1件现代乌郁河流砂样品碎屑锆石年龄数据。结果显示芒乡组碎屑锆石年龄集中分布在45-80 Ma范围,乌郁组呈现8-15 Ma的主要年龄区间和45-70 Ma的次要年龄区间,达孜组呈现三个主要年龄区间:45-65 Ma、105-150 Ma和167-238 Ma,现代乌郁河流砂样品呈现8-15 Ma的主要年龄区间和45-65 Ma的次要年龄区间(图1)。所有样品中的晚白垩世-早始新世锆石年龄与冈底斯岩基主要岩浆活动时间一致,乌郁组和现代河流样品中出现的8-15 Ma与来庆组火山岩形成时间一致,达孜组中出现的三叠纪-侏罗纪锆石与盆地北部中拉萨地体岩浆活动时间一致。碎屑锆石年龄谱结果和沉积相分析表明青藏高原南部自印度-欧亚板块碰撞以来发育多期次构造-岩浆活动:(1)古近纪林子宗-日贡拉组火山岩;(2)15 Ma构造-岩浆活动结束盆地芒乡组湖相沉积,并形成来庆组火山岩;(3)8 Ma 构造活动造成来庆组火山岩成为盆地主要物源;(4)2.5 Ma盆地发育辫状河,接受北部中拉萨地体物源。第四纪以来,青藏高原南部地貌格局逐渐形成。
孟庆泉
该数据为青藏高原1:400万地貌类型数据,地貌图可以表达地貌研究的成果,又是研究地貌的重要方法,对地貌学有着重要的作用,对地貌研究的不断发展有着重要的作用。数据包括两个部分,shp数据来源于中国1:400万形态地貌图,空间范围在中国境内;栅格数据来源于USGS(https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/),空间范围扩展到了青藏高原及毗邻山区,包括部分境外区域。矢量数据由1:400万形态地貌图,经扫描配准,并矢量数字化,数字化时精度保证在2个象元以内,栅格数据经过空间校准、精度验证和裁剪得到,详细的数据加工处理过程可见https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12265。
杨雅萍
中亚-西亚经济走廊以荒漠、山地和高原等地形为主,平均海拔为1000m左右,气候极度干旱,荒漠分布面积大,生态脆弱,干热季可持续时间久,可长达7个月,年平均降雨量最多也仅有150mm。区内自然环境差异大,地质条件复杂,在区域差异化的构造、地震、气象、水文、生态等的复合驱动作用下,走廊范围内泥石流滑坡广泛分布。以遥感影像为基础,解译中国-中亚-西亚经济走廊滑坡泥石流灾害,统计显示,中国-中亚-西亚经济走廊共发育滑坡303处,泥石流灾害2159处,泥石流主要包括冻融型泥石流、冰水型泥石流、暴雨型泥石流3种类型。
邹强
1)将广域而复杂的地理空间区域,甚至一个完整的流域自动划分为可重复、地貌学上具有一致性的地形单元,这项工作仍然停留在理论概念阶段,在实际操作中存在巨大的挑战。地形单元是地形地貌的进一步细分,能够保证斜坡单元内部地貌特征具有最大均一性和不同单元之间的最大异质性,适用于地貌或水文建模、遥感图像中的滑坡检测、滑坡敏感性分析和地质灾害风险评价。2)斜坡单元是重要的地形单元类型,斜坡单元定义为分水线和汇水线围成的区域,而实际上分水线和汇水线围成的区域往往为多个斜坡甚至一个小流域。理论上,每个斜坡单元需要确保内部最大均质性和不同单元之间的最大异质性,斜坡单元是一块与邻近区域具有明显不同地形特征的区域,这些地形特征差异可以依据汇水或排水分界线、坡度和坡向等特征,例如山脊线、山谷线、台地边界、谷底边界等地貌分界线。依据高精度数字高程模型,可以手动绘制规模和质量适宜的斜坡单元,但是手动绘制的方法既费时又容易出错,划分的斜坡单元质量依赖于专家的主观经验,适用于小范围区域,不具有广域、普遍应用价值。我们针对该领域在实际操作中的空白,提出了一个创新的建模软件系统,实现斜坡单元的最佳划分。3)基于汇流分析和坡向分割的斜坡单元自动划分系统V1.0,基于Python编程语言编写,作为GRASS GIS内插模块进行运行和计算,在给定数字高程数据和一组预先定义的参数实现斜坡单元的自动划分。4)基于 Python编程语言,代码具有灵活可变性,适用于具有不同专业知识的科学人员进行大范围的自定义和个性化定制。此外,该软件能够提供高质量的斜坡单元划分结果,反映区域主要地貌特征,为精细化滑坡灾害评价和预报提供基于的评价单元。可服务于地区土地利用规划,灾害风险评价与管理,极端诱发事件(地震或降雨等)下的灾害应急,以及对滑坡监测设备的遴选和预警网络的合理有效布置和运行具有重大的现实指导意义,在滑坡发育严重的地区都可以推广应用。
杨仲康
1)在山区,由于复杂的地形地质背景条件,在降雨、融雪、地震和人类工程活动等外界因子触发下,极易发生滑坡,导致生命财产损失和自然环境的破坏。为了满足工程场地建设的安全性、土地利用规划的合理性和灾害减缓的迫切性需求,需要展开区域滑坡敏感性评价。当利用多种不同的方法得到多个不同评价结果时,如何有效的将这些结果进行组合以得到最优的预测是当前仍未很难解决的一个技术难题,在确定某个区域滑坡敏感性评价的最优策略和最佳方法的操作执行方面仍然十分欠缺。2)利用传统经典的多元分类技术,通过对模型结果评估和误差量化,将最优评价模型进行组合,快速实现区域滑坡敏感性高质量评价。源代码基于R语言软件平台编写,用户需要单独准备一个本地文件夹,用来读取和储存软件运行结果,用户需要记住文件夹储存路径并在软件源代码中进行相应的设置。3)源代码设计了两种不同的模式来展示模型运行结果,以文本和图形格式的标准格式分析结果输出和需要空间数据并以标准地理格式展示的地理空间模式,4)适用于所有对滑坡风险评价工作感兴趣的人群。该软件能够为大专院校经验丰富的科研人员高效使用,也可以被国土环境规划、管理领域的政府人员和公益组织方便快捷、正确可靠的获取滑坡敏感性分级结果。可服务于地区土地利用规划,灾害风险评价与管理,极端诱发事件(地震或降雨等)下的灾害应急,以及对滑坡监测设备的遴选和预警网络的合理有效布置和运行具有重大的现实指导意义,在滑坡发育严重的地区都可以推广应用
杨仲康
试验共采用两种类型的地震波作为动力输入,一类为人工合成波,包括正弦波和不同超越概率的人工合成波;另一类为天然波,采用汶川卧龙波和汶川茂县波。正弦波幅值和频率是唯一的,所以可以用来研究地震动参数对斜坡动力响应的影响;天然波选取的为汶川地震发生时卧龙台站记录的土层地震波和茂县台站记录的基岩地震波,旨在通过对比两种地震波作用下斜坡的动力响应规律,探明不同类型地震波的输入对岩质斜坡动力响应规律的影响。每次加载完成后都进行白噪声扫描,用于分析斜坡的自振特性。每次加载完成后停留10分钟用于拍照和观察斜坡的破坏情况。
郭明珠
通过不同层次的旅游点、旅游线和旅游区的考察,形成景点、景区、廊道和重要的旅游交通节点、旅游村、旅游城镇等的旅游资源、旅游服务和旅游设施等的照片、视频数据,记录旅游发展状况,发现旅游发展中的问题,并形成相应的世界旅游目的地建设的思路;数据来源为无人机、行车记录仪和摄像机、手机、GPS,并按照景区、数据类别分成不同文件夹;数据资料经过多次核对,确保真实无误;本数据可为青藏高原世界旅游目的地建设提供可追溯的依据。
时珊珊
在泥石流柔性防护系统拦截泥石流灾害后,对灾害坡面进行无人机倾斜摄影,借助地形重构软件如Context Capture 建立坡面三维模型后,对防护过程进行显式瞬态动力反演计算分析,通过LS-DYNA计算软件计算获得结构的各个部件的力学响应历程,从而获取钢丝绳拉力、钢柱内力、系统缓冲距离、系统残余防护高度、消能器变形量、钢柱变形等数据,为防护系统性能评估、优化设计提供参考,为泥石流柔性防护系统设计提供依据。
齐欣
该数据集为基于10Be约束的青藏高原东部流域尺度侵蚀速率,数据集提供了第一作者、发表年份,经纬度以及侵蚀速率。数据收集整理于已发表的期刊文章,且不同的研究结果具有较好的一致性。流域尺度的侵蚀速率的空间部分特征往往与河流地貌特征(如陡峭指数)、气候以及构造活动具有一定的相关性,因此系统的数据集能够为区域范围内侵蚀速率的主控因素分析提供重要的数据支撑,使量化气候与构造在区域范围内对地表过程的贡献成为可能。
张会平
1)数据内容:本数据集为青藏高原东南三江流域滑坡灾害数据;2)数据来源及加工方法:本数据集系北京工业大学戴福初利用谷歌地球独立解译完成;采用遥感解译-现场验证-再解译-再验证等方法,经过7次系统解译最终形成本数据文件,累计对超过5000处滑坡开展了现场验证,具有较高的精度;4)本数据对青藏高原东南三江流域水能资源开发、交通工程建设、地质灾害评价等方面具有广阔的应用前景。
戴福初
2019-2021年的复杂山区泥石流、堰塞湖沉积物测年数据。数据采集地点为青藏高原东缘、南缘等区域泥石流易发的复杂山区。主要在中国科学院青海盐湖研究所盐湖化学分析测试中心、中国科学院成都山地所分析测试中心等完成实验分析。使用的仪器包括Risø TL/OSL–DA–20全自动释光仪等。建立了典型复杂山区泥石流沉积物年代数据集,定量研究了复杂山区泥石流沉积物的形成年代,确定了复杂山区的古泥石流灾害活动历史。
胡桂胜
易贡藏布下游水文观测数据主要内容包括易贡藏布下游水深及水温小时监测数据,数据采集时间为2020年。数据来源为安装在易贡湖下游基岩上的HOBO水位计采集得到,HOBO水位计为压力传感式水位计,每小时采集存储一次,水深及水温数据均为每小时均值,其中需特别注意测量获得的水深数据为压力数据,转换为水深数据时应扣减测点当地大气压。该数据质量可靠、精度较高,可用于记录易贡藏布水位年内变化,并通过控制关键河道最终达到反演径流过程的目的。
侯伟鹏
波密县天摩沟地面气象数据是由布置在帕隆藏布流域天摩沟中游的气象监测点采集获得的,数据采集时间为2020年。数据主要内容包括天摩沟雨量和气温观测数据,雨量数据通过HOBO雨量计采集得到,HOBO雨量计为翻斗式雨量计,每0.2mm降雨量记录为一次事件,输出记录的事件次数,事件次数乘以0.2mm即为雨量值;气温由数据记录仪中内置的一个10位分辨率温度传感器测量,采集方式为每小时采集存储一次,可以获得气温小时均值。该数据质量可靠、精度较高,可用于反映天摩沟雨量和气温实时变化动态,监测泥石流起动临界条件,预报该地区未来泥石流事件发生的可能性。
侯伟鹏
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
地球表面的起伏形态成为地貌。此数据集为川藏交通廊道区域范围内,精度为90m的地貌数据,数据格式为tif.。数据自《中华人民共和国地貌图集(1:100万)》数字化而成,根据海拔、起伏程度等对平原、丘陵、台地等地貌进行了分类,数据的精度较低,研究区范围内地貌种类较少。各类地貌在地域上的组合和垂向上的分异,不仅对气候、水文的变化和土壤、生物的分布有密切的关系,对工农业生产、水利和交通建设有重大的影响,而且还是生态环境演化、治理中必须考虑的重要因素。
王俪璇
青藏高原湖泊广泛发育有古湖岸线,记录了古水位的变化历史,由最高一级古湖岸线所代表的古大湖的发育时代具有较大争议。利用光释光测年技术,测定古湖岸线沉积地层中的滨湖砂的埋藏年代,可获取古湖岸线或古湖发育的时代。本数据包含有高原西北部三个湖泊最高一级古湖岸线的光释光年代。测年方法基于近年来发展出的钾长石高温红外释光测年法,有效解决了研究区石英释光信号不适用于测年的问题。本数据可为青藏高原古大湖的演化历史提供关键基础资料。
赵晖, 张帅, SHENG Yongwei
数据为2019年7月-8月专题组在雅江下游河谷、尼洋河流域获取的典型景观、地貌和沉积地层照片,以及黄土、河流沉积物的理化指标,主要包括:(1)尼洋河下游14C样品采样及年代;(2)尼洋河下游OSL年代学结果;(3)尼洋河下游喇嘛湾湖相沉积物与浪欧黄土XRF;(4)尼洋河下游喇嘛湾湖相沉积物与浪欧黄土磁化率 ;(5)尼洋河下游浪欧黄土粒度;(6)雅鲁藏布江下游河谷和尼洋河流域元素。照片主要展示了冰川、河流、湖泊等景观,以及滑坡面、冰川剪切面、沉积相等。
曹泊, 高红山
本数据集包含了雅砻江逆冲带的磷灰石和锆石的(U-Th)/He年龄数据,磷灰石的裂变径迹(AFT)年龄数据,该数据集后续会持续更新。第一部分数据是来自雅砻江逆冲带腹地分支断裂--玉农希断裂的磷灰石和锆石的 He以及磷灰石裂变径迹数据。第二部分数据是来自雅砻江逆冲断裂带的分支断裂锦屏山-木里断裂,包括磷灰石和锆石的 He年龄数据。数据结果较为集中,很好的约束了雅砻江逆冲带的演化,为探讨其在高原扩展过程中作用提供高质量的年代学依据。
张会平
本数据以流域为单位,对祁连山各流域的河流陡峭指数、凹度指数、流域面积、面积高程积分、侵蚀系数、侵蚀速率、降水等地貌特征数据进行提取和收集。其中河流陡峭指数与凹度指数是基于SRTM (Shuttle Radar Topography Mission) 3 弧秒 DEM数据提取的,流域侵蚀速率数据源于Palumbo et al. (2010) 和Palumbo et al. (2011),降水数据源自Geng et al. (2017)。为增加数据的可信度,数据中还给出了置信度为95%时每个流域的河流陡峭指数的范围。该数据为分析祁连山地貌特征与构造格局的关系奠定了基础。
胡小飞, 张亚男
中国西部地貌信息集成是由中国科学院地理科学与资源环境研究所谢传节博士领导的小组完成的。其中包括1:400万全国地貌数据库和1:100万西部地貌数据库,1:400万地貌数据是追踪收集和整理李炳元主编的“中国地貌图(1:400万)”和陈志明主编的“中国及其毗邻地区地貌图(1:400万)”。对资料进行扫描配准,利用ArcMap软件将所有配准得图件进行矢量化,并建立各自得分类和代码体系,按照图斑(普染色)和符号将地貌类型分为基本地貌类型和形态结构类型(点、线、面表示) 1:100万西部地貌数据是基于遥感影像等多源数据进行数字地貌集成、更新采用分层分级的解译方法。即平原与山地;基本地貌类型(25种),10种成因类型:次级成因类型:形态差异划分类型:次级形态差异划分类型:坡度、坡向及其组合划分地貌的倾斜程度或坡度;物质组成或岩性确定的地貌物质类型。 共对16幅地貌分幅进行解译工作,其编号分别为:G-45(加德满都)、G-46(错那)、H-44(普兰)、H-45(日喀则)、H-46(拉萨)、H-47(昌都)、I-43(伊斯兰堡)、I-44(狮泉河)、I-45(改则)、I-46(安多)、I-47(玉树)、J-43(喀什)、J-44(和田)、J-45(且末)、J-46(格尔木)、J-47(西宁幅)
周成虎, 程维明
黑河上游祁连附近地貌面包括一级剥蚀面(宽谷面),9级河流阶地面。阶地面分布数据主要通过野外考察获取,对各级地貌面分布范围进行GPS测量,在室内把野外资料进行分析,再结合遥感影像、地形图、地质图等资料,绘制得到黑河上游各级地貌面分布图。剥蚀面的年代在1.4Ma左右,黑河阶地形成晚于这一时代,都为晚更新世以来阶地。
胡小飞, 潘保田
采用天宝公司生产的Trimble 5800 GPS对阶地面进行了载波相位实时动态差分测量,得到阶地面的高程数据。室内对阶地面变形特征与幅度进行分析。数据包括黑河中游正义峡附近地貌面变形与黑河上游莺落峡附近地貌面变形。
潘保田, 胡小飞
“黑河流域生态-水文综合地图集”获黑河流域生态-水文过程集成研究-重点项目的支持,旨在面向黑河流域生态-水文过程集成研究的数据整理与服务,图集将为研究人员提供一个全面而详实的黑河流域背景介绍及基础数据集。 黑河流域生态水文综合地图集:黑河流域地势地形图,比例尺1:2500000,正轴等积圆锥投影,标准纬线:北纬 25 47。 数据源:黑河流域1:100万地貌数据,黑河流域河流数据、黑河流域居民点数据、黑河流域行政边界数据。 根据黑河流域分布、地势和地形形态可将黑河流域分为四个区:祁连山高山区、河西走廊平原区、走廊北山中山区、额济纳盆地。
赵军, 王小敏, 冯斌
“黑河流域生态-水文综合地图集”获黑河流域生态-水文过程集成研究-重点项目的支持,旨在面向黑河流域生态-水文过程集成研究的数据整理与服务,图集将为研究人员提供一个全面而详实的黑河流域背景介绍及基础数据集。 黑河流域生态水文综合地图集:黑河流域地貌类型图,比例尺1:2500000,正轴等积圆锥投影,标准纬线:北纬 25 47 数据源:黑河流域100万地貌图,黑河流域行政边界数据、黑河流域河流数据集、黑河流域居民点数据等基础数据
赵军, 王小敏, 冯斌
“黑河流域生态-水文综合地图集”获黑河流域生态-水文过程集成研究-重点项目的支持,旨在面向黑河流域生态-水文过程集成研究的数据整理与服务,图集将为研究人员提供一个全面而详实的黑河流域背景介绍及基础数据集。 黑河流域生态水文综合地图集:黑河流域主要地貌形态成因类型,比例尺1:2500000,正轴等积圆锥投影,标准纬线:北纬 25 47。 数据源:黑河流域1:100万地貌数据,黑河流域河流数据、黑河流域居民点数据、黑河流域行政边界数据。
王建华, 赵军, 王小敏, 冯斌
从2012年至2013年,对黑河中游正义峡附近地貌面进行了考察,主要包括4级河流阶地面。数据主要通过野外考察获取,在室内进行分析制图,得到中游正义峡附近各级地貌面分布图。
胡小飞, 潘保田
黑河中游正义峡附近河谷断面数据主要展示了黑河中游河流阶地的结构及其横断面分布特征。这些数据主要通过野外考察、测量得到。该组数据包括黑河正义峡断面和罗城断面。
胡小飞, 潘保田
中国西部地貌信息集成是由中国科学院地理科学与资源环境研究所谢传节博士领导的小组完成的。其中包括1:400万全国地貌数据库和1:100万西部地貌数据库,1:400万地貌数据是追踪收集和整理由中国科学院国家计划委员会地理所编制,李炳元主编的“中国地貌图(1:400万)”和陈志明主编的“中国及其毗邻地区地貌图(1:400万)”。对资料进行扫描配准,利用ArcMap软件将所有配准得图件进行矢量化,并建立各自得分类和代码体系,按照图斑(普染色)和符号将地貌类型分为基本地貌类型和形态结构类型(点、线、面表示),数据分为构造地貌和形态地貌。 投影信息: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
程维明, 周成虎
黑河地貌数据源自中华人民共和国地貌图集(1:100万)。本数据是基于遥感影像等多源数据集成、更新得到。主要使用和参考的数据包括:1)遥感影像数据:全国1990’s 左右的TM和2000’s 左右的ETM影像;2)历史地貌图:已出版的15幅100万地貌图、两套全国1:400万地貌图、全国各省市区的50万或100万地貌草图;3)基础地理数据:全国1:25万基础地理数据和25万DEM数据;4)地质数据:全国1:50万地质图;5)相关专题图:土地利用图、植被图、土地资源图等。解译方法采用基于ARCGIS的人机交互方式,并按照分层分级的解译顺序进行:即第一层:平原与山地;第二层:基本地貌类型(28种);第三层:10种成因类型;第四层:次级成因类型;第五层:形态差异划分类型;第六层:次级形态差异划分类型;第七层:坡度、坡向及其组合划分地貌的倾斜程度或坡度;第八层:物质组成或岩性确定的地貌物质类型;第九层:合并1-7层图斑。共包括441种地貌类型及编码。数据字段包括:Fenfu(图幅号)、name(属性)、class(编码)、Sname(行政区划)。
程维明
该数据来源于中科院沙漠研究所(现中科院寒旱所)编制的巴丹吉林1:50万风沙地貌数据集。 数据集主要包括:dimao(地貌),height(沙丘高度),lake(湖泊),lvzhou(绿洲),river(河流),road(道路)。
朱震达, 王一谋, D.杰凯尔, J.霍弗曼
一、本数据 编制:中科院兰州沙漠研究所 出版:地图出版社 地图印刷厂印制 发行:新华书店北京发行所发行 二、1:150万塔克拉玛干沙漠风沙地貌图包括: 1、aeolian_landform_taklimakan_150(风沙地貌)2、height(沙丘高度)3、lake(湖泊)4river1、2、3(河流),5、road1、2、3(道路) 三、风沙地貌属性字段:Aeolian_c(属性)、Aeolian_(英文对照)、Code(属性编码) 地貌数据属性分类代码如下: (一)、风沙地貌类型 111、垄状复合型沙山 112、复合型新月形沙丘及沙丘链 113、金字塔沙丘 114、新月形沙丘及沙丘链 115、格状沙丘及格状沙丘链 116、风蚀残丘地 117、复合型沙垄 118、穹状沙丘 119、鱼鳞状沙丘群 120、新月形沙垄及线状沙垄 121、红柳沙包 122、戈壁 (二)、沙丘高度类型 211、小于10米 212、10-25米 213、25-50米 214、50-100米 215、大于100米 (三)、其它类型 311、有林地及灌木林 312、人工绿洲 313、盐碱地及沼泽 四、投影信息: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
王建华
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件