全球3小时河道洪水再分析数据GRFR,包括1)1980-2019年全球0.05度,3小时/日格点陆面产流数据。2)全球294万条河段(基于90m数字高程模型提取),3小时/日天然径流模拟数据。3)全球3小时河道洪水事件数据。4)基础地形数据MERIT-Basins。 该数据集以分布式水文模型VIC和河道汇流模型RAPID为模型链核心,集合一系列多源数据和模型手段构建的全球高分辨率高精度天然河川径流模拟系统模拟而成。基于美国6000余个站点3小时和全球14000余个站点日径流观测资料的精度评估表明,该数据能够较好地再现3小时和日尺度径流过程,同时能够较好地捕捉洪水事件。详细过程请参阅参考文献。 该数据集为遥感卫星径流反演算法开发、全球洪水特性分析和物理机制分析尤其是无资料地区提供了强有力的新数据支撑。
杨媛, 潘铭, 林佩蓉
全球294万条河段的天然径流量模拟数据产品,单位m3/s。本数据是基于VIC水文过程模式与RAPID矢量河网汇流模型模拟得到。其中陆面水文过程模式空间分辨率为0.25°,矢量汇流模式中的河网数据基于90-m MERIT Hydro水文矫正地形数据产品提取。产流部分经过基于机器学习得到的径流特征值进行参数率定,并基于多分位数径流特征值进行了格点尺度的产流偏差矫正,经全球1.4万个径流观测站点验证,数据产品具有较优的验证精度。
林佩蓉, 潘铭, 杨媛
采用三个不同的数据源,包括1920年代的民国初期地图、1960年代的数字化地形图和1970-2020年的Landsat MSS/TM/ETM+/OLI影像。1920年代民国初期地图进行了扫描、几何校正和地理参考校正。1960年代使用1:250 000的地形图。所有地图都是以Albers等圆锥投影法进行地理参照,均方根(RMS)误差小于1.5个像元。针对早期地图,选择目视解译和手工数字化来对湖泊边界进行矢量化。从1990年开始,对Landsat影像采用半自动的水体分类方法来区分水体和非水体信息,然后提取湖泊边界,并通过与原始Landsat图像的比较进行目视检查和人工编辑。
张国庆, 冉有华
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
水是人类赖以生存与发展的物质基础,也是我们感知和应对气候变化的重要媒介。受独特季风气候与阶梯状地形影响,中国水资源分布极不均匀,缺水问题突出,是全球水资源极度脆弱的地区之一。人类活动与气候变化的复合作用,进一步加剧了中国水循环过程研究的复杂性。因此,迫切需要一套质量可靠、时空连续,且剔除大规模人类活动影响下的天然径流数据,为水循环研究提供本底数据支持。然而,中国现有的天然径流资料缺失率较高,参考站点密度不足,在年际和季节变化尺度上存在较大偏差,难以客观揭示大尺度径流变化的自然规律。本研究建立了一套长时序、全覆盖、高质量、时空连续的天然河川径流资料,命名为CNRD v1.0(The China Natural Runoff Dataset version 1.0)。CNRD v1.0提供1961年1月1日至2018年12月31日中国0.25°×0.25°天然径流估算量日值、月值和年值。200个有资料水文站点率定结果显示,模型参数在大多数站点得到了充分校准,模型纳什效率系数(NSE)在率定期和验证期的平均值分别为0.83和0.80。无资料流域交叉验证结果显示,MPR方法提供了最佳的区域化方案,率定期 NSE中位数为0.76,验证期NSE中位数为0.72。结果总体显示水文模型参数率定和区域化表现良好,可用于长时序径流资料重建。另外,通过与两套全球径流格点数据集ISIMIP和GRUN比较,发现CNRD v1.0数据集的径流空间分布上过渡更加连续,且在表示中国复杂地形和气候理分划下的水资源空间分布方面优于全球径流数据集。
缪驰远, 苟娇娇
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
本数据包括青藏高原中部的25个湖泊的细菌16S核糖体RNA基因序列数据,样品采集时间为2015年7月-8月,使用2.5升采样器对地表水进行了三次重复采样。样品采集后立即带回北京青藏高原研究所生态实验室,所取盐湖的盐度梯度为0.14 ~ 118.07 g/L。本数据为扩增子测序结果。将湖水在0.6 atm过滤压力下浓缩到至0.22μm膜上,然后通过FastDNA SPIN Kit 提试剂盒提取DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。使用Illumina MiSeq PE250测序仪进行对端测序,原始数据通过Mothur软件进行分析,序列与Silva128数据库进行比对并以97%的同源性将序列划分为操作分类单元(OTU)。本数据可用于分析青藏高原湖泊微生物多样性研究。
孔维栋
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
水库是重要的水利工程设施,在农业灌溉和市政用水的储存和输送中发挥着关键作用,但这一作用会受到水库蒸发的影响。但由于全球长期且连续的水库地理信息的可获取性受限,因而估算全球水库蒸发损失仍有一定困难。目前,两个最新的水库数据集,即全球水库表面数据集(Global Reservoir Surface Area Dataset)和全球水库和大坝数据库(Global Reservoir and Dam Database),为解决这一困难提供了机会。我们使用这两个数据集估算了1985年至2016年全球7242个大型水库的月水库蒸发量。其中,蒸发率采用三套气象产品数据分别进行计算( (1) TerraClimate; (2) ERA5; (3) Princeton Global Forcings),水面面积采用全球水库表面数据集(Global Reservoir Surface Area Dataset)。
田巍, 刘小莽, 王恺文, 白鹏, 刘昌明
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
该数据集包含了2021年1月1日至2021年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。但是由于2021年青海省于研究站点鱼雷发射基地进行翻修,打造鱼雷发射基地的红色旅游区。该站点所有仪器于2021年5月30日全部拆除,准备于2022年7月重新安装。因此该站点2021年实际获得数据为2021年1月1日至2021年5月29日数据。2021年5月30日到12月31日数据缺失。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于冬季湖水结冰故将水温探头收回,故2021.1.1-2021.5.31期间无水温数据记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
本数据为祁连山地区2021年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2021年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2021年的大致分布,可用于流域水资源定量估计研究。
李佳
于2020年9月3日-9月9日在怒江流域上游(即怒江源区那曲流域)采集地下水与地表水,样品采集后立即放入100 ml高密度聚乙烯(HDPE)瓶。18O和D采用液态水同位素分析仪(Picarro L2140-i,USA)进行分析测试,稳定同位素比率用相对于Vienna“标准平均海水”(VSMOW)的千分差来表示。δ18O和δD的分析误差分别为±0.1‰和±1‰。为后续分析那曲流域地下水的水源解析提供基础的数据支撑。
刘亚平, 陈政豪
为进一步查明雅鲁藏布江等流域水系固体物质运输过程及时空演变,第二次青藏科考任务二专题四水系固体物质源—汇过程与演变科考一分队,四川大学沉积动力观测分队,于2021年5月15日前往雅鲁藏布江山南市羊村水位站河段进行坐底仿生水沙观测系统投放仪式。该坐底仿生系统搭载不同类型的水沙运动要素观测设备,能长时间、连续且同步对水沙运动重要要素进行较高时间分辨率观测。本数据集包含:(1)垂线分层水流平均流速数据(ADCP20210515.xlsx),(2)近底单点流速、紊动能数据(VectorADV20210515.xlsx),(3)超级浊度仪悬沙浓度数据(AOBS20210515.xlsx),(4)激光粒度仪水深、悬沙浓度及级配数据(Lisst20210515.xlsx)。该数据集记录了高时间分辨率水沙要素同步连续观测数据,时间分辨率达10分钟/次,观测时间长达近1个月,成功观测到了雅江流量增大下的水沙耦合变化过程。基于坐底仿生观测系统的水沙多要素同步连续观测技术对揭示水系源汇过程与演变、推移质泥沙输移、洪水模拟计算、山洪水沙灾害预警与防治、重大基础工程建设等方面提供技术支撑和科学依据。
许唯临, 黄尔, 闫旭峰, 罗铭, 王路, 王协康, 马旭东, 刘超
年楚河干流河床表面均是由宽级配卵砾石颗粒组成,洲滩及河床上有丰富的卵砾石颗粒。本次考察对年楚河干流和支流的床面级配进行了测量,本数据集包含年楚河流域5个干流和2个支流的采样地点信息(表1)、河床表面级配(表2)。采样位置一般选择在有明显河床断面附近且水流长期流经的地方。由于是枯水期采样,其河滩上的床面级配可以认为是上一场洪水期所携带的卵砾石推移质运动停留下来的,故认为枯水期河滩上采样区域的床面级配是洪水期的推移质输沙级配。床面级配测量方法是采用基于图像处理的全粒径自动识别法(Basegrain软件)进行的,泥沙颗粒识别精度较高。研究年楚河的床面级配分布特征对揭示水系源汇过程与演变、推移质泥沙输移、洪水模拟计算、山洪水沙灾害预警与防治、重大基础工程建设等具有重要科学与社会价值。
罗铭, 黄尔, 闫旭峰, 马旭东, 王路
本数据集在专题实施期间(2019-2021年)通过野外实地采集了喜马拉雅山区中段典型堰塞坝溃决洪水沉积物样品,数据内包含样品编号,采样点经纬度等字段数据,通过对样本数据处理,测试分析,得到了雅鲁藏布江流域高能洪水规模如水深、流速等随时间变化的相关参数。模拟结果可以为开展相应流域的洪水动态过程分析提供参考,并初步揭示了雅鲁藏布高能古洪水对大峡谷的“构造瘤”模式提供了直接的侵蚀动力来源,可能导致了印度洋洋流的改变,并可能对下游恒河平原的古人类造成过灾害性的破坏。
刘维明
本数据包含:喜马拉雅山区30m山洪综合风险数据、30m山洪危险性数据、30m山洪承灾体数据、30m山洪易损性分布数据。数据基于全国山洪灾害调查评价成果,得到研究区内山洪灾害综合风险指标分布、各行政村山洪危险性指标分布、山洪承灾体指标分布、山洪易损性指标分布,形成喜马拉雅山区山洪灾害综合风险分布数据。本数据有助于对山洪灾害的空间变化特点和分布规律的分析,山洪灾害风险的分区划分对于防汛应急部门的防汛管理和防汛部署具有一定指导作用。
王中根
本数据根据1840-2019重大山洪灾害案例汇编,是川藏铁路沿线的山洪灾害调查数据,包括了时间、地点、灾害类型、成因、经度、纬度、降雨量、铁路段和灾害损失信息。根据2006版的《中国历史大洪水资料调查汇编》、《全国山洪灾害防治项目(2013-2015年)》四川省和西藏自治区山洪灾害调查成果及实地调查等不同数据源的特点对原始资料进行真实性、一致性的检查及规范化处理;然后根据数据源及资料进行分析,整理归纳;最后,运用SuperMap软件进行处理等。
王中根
水源涵养服务是一种重要的生态系统服务,直接影响区域水资源的整体水平,会对区域生态系统、农业、工业、人类消费、水力发电、渔业和娱乐活动产生重要影响,对于维持生态系统稳定以及提高人类福祉具有重要意义。针对水源涵养产品生产,基于水量平衡原理耦合降雨量、蒸散发、太阳辐射、气温、植被类型等数据进行了国家屏障区生态系统水源涵养建模研究。水源涵养服务利用基于水量平衡原理的InVEST 模型进行计算,InVEST模型具有输入数据量少、导出数据量大、对抽象生态系统服务功能进行定量分析等优点,是当前水源涵养服务评估的重要手段。该方法认为水源涵养服务为降水量减去蒸散发量,计算的指标包括年降水量、年蒸散发量。其中降水量数据以气象站点数据为基础,将日气象数据累积到年尺度上,然后利用ArcGIS空间插值方法插值到空间上;蒸散发量的计算是通过Zhang模型实现。将多源数据作为InVEST模型的输入变量基于参数化模型实现对青藏高原2000-2020年1km分辨率的水源涵养服务估算。
王晓峰
2020年夏季采集了西藏自治区26个湖泊湖水,主要位于藏南和阿里东部地区,同时,2020年10-11月采集了可可西里地区3个湖泊的湖水数据。将采集的湖水样品装入塑料瓶内,部分样品利用碱度试剂盒现场滴定获得CO32-和HCO3-离子浓度,其余样品放置冰箱冷藏保存,带回实验室后,利用ICP-OES测试主要阳离子K+, Na+,Ca2+,Mg2+离子浓度,利用阴离子色谱仪测试HNO3-,SO42-、F-和Cl-离子浓度,分析误差小于10%。
孟先强
通过半定量采集方法,于2020年夏季在西藏羌塘腹地中的22个湖泊和羊卓雍错流域开展了底栖动物研究工作。通过沿岸和深水区群落的混合取样获得了西藏高寒湖泊底栖动物的相对丰度数据。本数据结果表明,在挑拣出来的6420头底栖动物中,共鉴定出28种底栖动物,隶属于3门7纲,其中主要底栖类群为钩虾和摇蚊,少数湖泊优势种为水龟虫。该数据提高了西藏底栖动物的识别精度和认知范围,将为高原湖泊水生动物多样性和渔业资源评估提供参考。
唐红渠
该数据集包含青藏高原160个湖泊(面积大于40平方公里)1978-2017年的连续日尺度湖面温度(MOD11A1的日间湖温、MOD11A1的夜间湖温、基于MOD11A1日均湖面温度、基于模型的湖面温度)。数据集生产过程首先改进以能量平衡为基础的半物理湖表水温模型(air2water)以实现冰期与非冰期连续模拟,并以MOD11A1产品提取的全湖平均表面温度作为模型的率定数据。数据集与4个湖泊的实测湖面温度相比相关性大于0.9,均方根误差小于2.5℃。该数据集为认知青藏高原湖泊水热平衡、水生生态系统过程及其对气候变化响应提供数据支撑。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
泛萨赫勒地区地表水体范围及面积数据集包含了泛萨赫勒地区23个国家内地表水体(≥1km2)在21年间的变化情况。首先,基于全球地表水体范围栅格数据集(Global surface water extent dataset,GSWED),通过建立面积大小和观测频率的掩膜排除GSWED原始数据中由于动态阈值所产生的误分类,获取改进后的地表水体数据集。随后,对改进后的地表水体数据进行对象化处理,再结合河网数据(Global River Widths from Landsat,GRWL)以及湖泊数据(HydroLAKES)进行人工修订和整理。最后,基于修订整理后的地表水体数据,统计生成泛萨赫勒地区的水体范围和面积变化数据集。 该数据集为矢量文件(.shp),地理坐标系为WGS84。与原始的栅格数据集相比,该数据集在减少了数据的冗余的同时,将地表水体从像元尺度上升到对象尺度,在地学分析中更具实际意义。数据在空间范围上覆盖了萨赫勒以及西非地区,为该地区的地表水资源评估和研究工作提供了数据支撑。
吕云哲, 蒋敏, 贾立
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
刘军志
易贡藏布下游水文观测数据主要内容包括易贡藏布下游水深及水温小时监测数据,数据采集时间为2020年。数据来源为安装在易贡湖下游基岩上的HOBO水位计采集得到,HOBO水位计为压力传感式水位计,每小时采集存储一次,水深及水温数据均为每小时均值,其中需特别注意测量获得的水深数据为压力数据,转换为水深数据时应扣减测点当地大气压。该数据质量可靠、精度较高,可用于记录易贡藏布水位年内变化,并通过控制关键河道最终达到反演径流过程的目的。
侯伟鹏
本数据为黑河上游1992-2015年生长季降水产生的径流、蒸散发,数据内容包括:降水(mm)、蒸散发(mm)、径流(mm)、土壤含水量(m3/m3)。时间分辨率:年(生长季),空间分辨率:0.00833°。数据是基于Eagleson生态水文模型使用气象、土壤、植被参数模拟获得的,模拟的降雨径流使用黑河上游6个子流域(黑河干流、八宝河、野牛沟、梨园河、瓦房城、洪水河)的生长季观测径流数据进行了验证,相关系数(R)的变化范围为0.53-0.74,RMSE在32.46-233.18 mm之间,相对误差范围为-0.66--0.0005;模拟蒸散发与GLEAM ET之差在−115.36 mm 到 44.1 mm之间。模拟结果可以为黑河上游水文模拟提供一定参考。
张宝庆
本数据集为未来50年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为2020-2070年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,气象驱动采用38个CMIP6模型SSP2-4.5情景下的集合平均结果,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
本数据集为过去40年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为1980-2019年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
1. 冰湖面积数据(1960s-2020年) 该数据包含基于1960s的Korona KH-4和2016-2020年的Sentinel-2和Sentinel-1等卫星绘制的不丹喜马拉雅冰湖面积。 2. 冰湖潜在溃决洪水灾害等级 该数据包含面积大于0.05平方公里(n=278)不丹喜马拉雅冰湖潜在溃决洪水灾害等级。 数据详细处理流程请见论文。
Sonam Rinzin, 张国庆
该数据包含了南亚五国(缅甸、泰国、老挝、越南、柬埔寨)网格尺度的未来水资源未来预估数据(2010-2100年)。数据来源于跨领域国际影响模型比较计划(ISIMIP)中DBH模型的输出结果,将多个气候模式的气象数据作为输入,并最终获取了高排放情景下(RCP8.5)的各个模式的平均值。采用空间插值的方法从0.5度的水资源量数据降尺度得到0.25度水资源量预估数据。ISIMIP提供的数据经过良好的数据质量检测和控制,数据插值之后没有进一步验证。该数据可用于南亚五国水资源评估。
刘星才
1)数据内容:纳木错2019年水位日变化数据,观测点坐标为东经90.96°,北纬30.77°,海拔4730米,下垫面为高寒草原。(2)数据来源和处理方法:人工读水位尺的方式测量,原始观测数据,由专人根据观测记录进行加工和质量控制。(3)数据质量描述:由于该数据是采用人工读水尺的方式获得,受恶劣环境的影响较大,部分时段数据缺失,数据不连续。(4)数据应用前景:该数据可应用于湖泊水文、高寒区水文过程等科研领域。
王君波
本数据集包括西藏和青海用水量统计数据,数据来源于《西藏水资源公报》和《青海水资源公报》,统计尺度为市级单元尺度,包括青海省的西宁市、海东市、海北州、海南州、黄南州、果洛州、玉树州和海西州等市级单元,西藏的拉萨、昌都、山南、日喀则、那曲、阿里和林芝等市级单元;变量包括年农田灌溉用水量、林牧渔畜用水量、工业用水量、城镇公共用水量、居民生活用水量、生态环境用水量、总用水量等。该数据集可用于青藏高原水资源管理和生态环境保护等领域。
刘兆飞, 姚治君
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
陆表水域是陆地水循环中的重要载体。卫星遥感是陆表水体动态监测的有效手段,陆地水域时空演变可揭示自然因素及人类活动对水域的影响规律,对合理开发、利用和保护陆表水域有重要的意义。SSWMF全国逐月无缝陆表水域数据集是基于联合多源光学和雷达卫星观测、适用于大范围陆表水域动态监测方法SSWMF提取得到,输入数据包括MODIS、Landsat8、Sentinel 2的地表反射率数据和Sentinel 1的后向散射系数数据,基于Google Earth Engine遥感大数据平台计算得到。验证表明数据集的总体精度为92.39%。本数据集覆盖全国及周边区域,时间步长为每月,空间分辨率为30米。联合多星光学和雷达遥感的大范围陆表水域数据集可为湖泊水体动态、区域水旱灾害监测、水资源调查等提供帮助。
杨永民
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
该数据集包含2003-2019年江苏省十大湖泊(太湖、洪泽湖、高邮湖、骆马湖、石臼湖、滆湖、阳澄湖、白马湖、邵伯湖和淀山湖)的水位、面积和水量变化,为研究江苏省近年来的湖泊水文生态系统平衡提供了重要的参数。 十大湖泊的水位数据基于Envisat/RA-2、Cryosat-2、ICESat、ICESat-2测高卫星获得;面积数据基于Landsat TM/OLI光学影像采用改进的归一化水体指数提取。对水位数据完整的四个湖泊(洪泽湖、高邮湖、滆湖和太湖),根据水位和面积结果估算了2003-2019年的水量变化。 与实测水位对比,卫星测高获取的所有湖泊的水位都有显著的一致性(α = 0.05),平均绝对误差为0.168 m。 该数据集提供了2003-2019年江苏省十大湖泊的水位、面积和水量变化,可以为江苏省水资源的管理与调度提供数据支持。
柯长青, 常翔宇, 蔡宇, 夏文韬
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射计与雷达主被动协同观测试验。试验地点位于内蒙古自治区正蓝旗昕元牧场(115.93°E, 42.04°N),数据获取于2018年夏季。数据集包含四个部分,即:亮温数据、后向散射数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,包含三个微波波段(L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),数据测量时间间隔为0.5小时。主动微波数据由地基雷达(GBSAR)观测得到,包含了L和C波段四种极化(VV, VH, HH, HV)下的后向散射系数,观测入射角变化范围为30-65°(2.5°间隔)。土壤数据包含地表粗糙度和6层土壤水分和土壤温度(1 cm, 3 cm, 5 cm, 10 cm, 20 cm, 50 cm),采样间隔为10分钟;植被数据为草地的植被含水量。 试验观测时间从2018年8月18日持续到9月25日,数据涵盖的草地多频多角度微波亮温、后向散射系数以及土壤和植被等相关配套数据为陆表微波辐射散射建模与验证、主被动微波亮温降尺度、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 耿德源, 施建成
该数据集为发源于青藏高原的黄河流域水文站河水的季节性水文观测数据。共两个水文站:1、黄河中游龙门水文站,为2013年逐周水文数据,包括水温(T)、径流量(Qw)、物理侵蚀速率(PER)、pH。2、黄河唐乃亥水文站,为2012年7月至2014年6月河水逐月数据,包括径流量(Qw)、泥沙量(silt)、pH、EC。该数据集委托黄河水利委员会水文站工作人员观测,为青藏高原隆升背景下水文学、水化学、水圈循环等研究提供基础水文资料。
金章东, 赵志琦
化学风化研究对于理解高原隆升如何调节气候变化机制、圈层元素物质循环等有重要意义。该数据集为发源于青藏高原的黄河流域水文站河水的季节性常量元素浓度及稳定同位素数据。共两个水文站:1、黄河中游龙门水文站,为2013年采集的高分辨率(逐周)样品数据,元素浓度包括K、Ca、Na、Mg、SO4、HCO3、Cl等。采集水样的阳离子数据均在中国科学院地球环境研究所的ICP-AES上测试,阴离子数据在中国科学院南京地理与湖泊研究所的离子色谱仪(ICS1200)上测试, 不确定度均为5%以内,HCO3为滴定法测试。河水高分辨率(每周)Li同位素数据,于2017年在中国科学院地球环境研究所MC-ICP-MS测试,测试精度2SD好于5‰;2、黄河唐乃亥水文站,为2012年7月至2014年6月采集的河水(逐月)数据集,常量元素浓度包括K、Ca、Na、Mg、SO4、HCO3、Cl等,稳定同位素数据包括S、O、H。该数据集可以用于研究青藏高原隆升背景下现代风化过程,为研究流域物理侵蚀、化学风化提供了第一手可靠资料。
金章东, 赵志琦
数据集包含川藏交通廊道河流、湖泊数据。按照等级将河流划分为1-4级。并对河流进行了编号及地理编码。该数据既可作为区域地理底图的基本要素,也可作为水文区域划分的基本条件。该数据来源未全国1:100万基础地理数据,覆盖全国陆地范围和包括台湾岛、海南岛、钓鱼岛、南海诸岛在内的主要岛屿及其临近海域,共77幅1:100万图幅,该数据整体现势性为2015年。数据采用2000国家大地坐标系,1985国家高程基准,经纬度坐标。
王俪璇
透明度,作为一种最直观地反映水质特性的指标之一,能够综合地反映水体生态系统的营养状态。光学遥感技术为监测大范围湖泊(包括水库)透明度变化提供了可能。中国湖泊(>1公顷)透明度的年均值数据集覆盖时间从1990到2018年,时间分辨率为5年一期,空间分辨率为30米,使用的数据源为GEE平台的Landsat 长时间序列天顶角反射率产品数据。中国的青藏高原、蒙新高原和东北湖区的影像选择时间主要集中在每年5-10月的非冰期。研究团队利用3种实测透明度数据集进行中国湖泊透明度反演模型的构建与验证。第一种数据集是本研究团队在2004-2018年获取的野外实测数据,该数据集的3/4(976)用来建立模型(红/蓝波段比算法),精度为R2=0.79, rRMSE=61.9%;剩余的1/4(325)用来验证模型,精度为R2=0.80, rRMSE = 57.6%。另外两种数据集是用来验证透明度反演模型的时间迁移性,其中一种数据集是2007-2009年期间由中科院南京地理与湖泊研究所进行湖泊调查获取的实测数据(340),精度为R2=0.78,rRMSE = 59.1%;另一种数据集是1980s-1990s期间第一次湖泊调查结果(229),精度为R2=0.81,rRMSE = 50.6%。模型验证结果表明,透明度反演结果在时空上具有较好的精度和稳定性。最后,基于透明度反演模型,在GEE云平台上编写去云算法、水体指数算法等来实现中国湖泊透明度的反演。该数据集信息有助于决策者或者环境管理者更好改善和保护水质,维持区域的可持续发展。
陶慧, 宋开山, 刘阁, 王强, 温志丹
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射观测试验,试验地点位于内蒙古自治区多伦县 (42.18°N, 116.47°E),数据获取于2017年。数据集共包含三个部分,即亮温数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,涵盖三种农作物 (玉米、莜麦和荞麦),包括三个微波波段 (L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),时间分辨率为0.5小时。土壤数据包含了三种农作物土壤的5层土壤水分和土壤温度 (2.5 cm, 10 cm, 20 cm, 30 cm, 50 cm),采样间隔为10分钟;土壤数据还包括地表粗糙度、降雨量、灌溉标记和土壤质地。植被数据包括叶面积指数、植株高度、植被含水量等。 试验观测时间从2017年7月19日持续到8月30日,其所涵盖的不同农作物的多频多角度微波亮温及土壤和植被等相关配套数据为陆表微波辐射建模与验证、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 李尚楠, 樊东, 王平凯, 耿德源, 施建成
本数据集包含来自闪电河流域土壤温湿度无线传感器网络(以下简称SMN-SDR)的34个站点的土壤水分、土壤温度和降水的原位测量数据。整个观测网络覆盖约10000平方公里(115.5-116.5°E,41.5-42.5°N)。SMN-SDR 所覆盖的闪电河流域地势相对平坦,地表覆盖类型以草地和农田为主。网络中共计包含34个站点,分别设置了100公里(大尺度)、50公里(中尺度)和10公里(小尺度)三种采样尺度。站点观测使用Decagon 5TM 土壤水分传感器,每个站点统一按照五个测量深度(分别为3、5、10、20和50厘米)进行测量,其中有20个站点配备了HOBO雨量计。测量数据稳定后定期针对每个站点的每一层土壤采集土壤样品,分析重量/体积含水量、容重和土壤质地等,以对原始测量数据进行校准。数据采样间隔为10分钟(2019年6月之前)或15分钟(2019年6月之后)。 闪电河流域土壤温湿度无线传感器网络将为卫星反演和模型模拟的土壤水分产品真实性检验提供长期的地面参考数据。
赵天杰, 姬大彬, 蒋玲梅, 崔倩, 陈德清, 郑景耀, 张子谦, 胡路, 施建成
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
本数据集包含来自闪电河流域土壤温湿度无线传感器网络(以下简称SMN-SDR)的34个站点的土壤水分、土壤温度和降水的原位测量数据。整个观测网络覆盖约10000平方公里(115.5-116.5°E,41.5-42.5°N)。SMN-SDR 所覆盖的闪电河流域地势相对平坦,地表覆盖类型以草地和农田为主。网络中共计包含34个站点,分别设置了100公里(大尺度)、50公里(中尺度)和10公里(小尺度)三种采样尺度。站点观测使用Decagon 5TM 土壤水分传感器,每个站点统一按照五个测量深度(分别为3、5、10、20和50厘米)进行测量,其中有20个站点配备了HOBO雨量计。测量数据稳定后定期针对每个站点的每一层土壤采集土壤样品,分析重量/体积含水量、容重和土壤质地等,以对原始测量数据进行校准。数据采样间隔为10分钟(2019年6月之前)或15分钟(2019年6月之后)。 闪电河流域土壤温湿度无线传感器网络将为卫星反演和模型模拟的土壤水分产品真实性检验提供长期的地面参考数据。
赵天杰, 姬大彬, 蒋玲梅, 崔倩, 陈德清, 郑景耀, 张子谦, 胡路, 施建成
该数据集包含了2020年1月1日至2020年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于冬季湖水结冰故将水温探头收回,故2020.10.19-2020.12.31期间无水温数据记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
该数据集包含了2020年11月27日至2020年12月31日兰州大学寒旱区科学观测网络苏干湖站气象要素梯度观测系统数据。站点位于甘肃苏干湖,下垫面是湿地。观测点的经纬度是94.125°E,38.992N,海拔2798m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下10cm、20cm、40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_10cm、Ms_20cm、Ms_40cm)(单位:百分比)、土壤温度(Ts_10cm、Ts_20cm、Ts_40cm)(单位:摄氏度) 、土壤水势(SWP_10cm,SWP_20cm、SWP_40cm)(单位:千帕)、土壤电导率(EC_10cm,EC_20cm、EC_40cm)(单位:微西门子/厘米)光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常数据以-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
该数据集包含了2020年1月1日至2020年4月12日兰州大学寒旱区科学观测网络寺大隆站气象要素梯度观测系统数据。站点位于甘肃张掖市肃南县康乐乡,下垫面是森林。观测点的经纬度是99.926E,38.428N,海拔3146m。二维超声风速/风向传感器和空气温湿度传感器分别架设在0.5m、3m、13m、24m、48m处,共5层;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔24m处;两个红外温度计分别安装在4m(冠层下)、24m(冠层下)处,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、10cm、20cm、40cm、60cm处;光合有效辐射传感器分别安装在4m(冠层下)、24m(冠层下)处;日照时数传感器以及四分量辐射仪安装在24m处。 观测项目有:风速(WS_0.5m、WS_3m、WS_13m、WS_24m、WS_48m)(单位:米/秒)、风向(WD_0.5m、WD_3m、WD_13m、WD_24m、WD_48m)(单位:度)、空气温湿度(TA_0.5m、TA_3m、TA_13m、TA_24m、TA_48m和RH_0.5m、RH_3m、RH_13m、RH_24m、RH_48m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_A、IRT_B)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm (单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm)(单位:摄氏度) 、土壤水势(SWP_5cm、SWP_10cm、SWP_20cm、SWP_40cm、SWP_60cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm、EC_20cm、EC_40cm、EC_60cm)(单位:微西门子/厘米)、光合有效辐射(PAR_A、PAR_B)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常数据以-6999代替(因SDI12通道总线故障,风速风向、土壤三参数、土壤水势等传感器较大范围缺失数据);(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
该数据为2019年西藏色林错和纳木错周边23个湖泊61个点位浮游植物数据,采样时间为2019年8-9月,采样方式为常规浮游植物采样方式,样品采集过程中采集水体样品1升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻和隐藻等6个门类,共计92种不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。
方纯, 卢善龙, 鞠建廷, 唐海龙
该数据集包含了2020年1月1日至2020年12月31日兰州大学寒旱区科学观测网络西营河站气象要素梯度观测系统数据。站点位于青海海北门源县仙米乡讨拉村,下垫面是高寒草甸。观测点的经纬度是101.855E,37.561N,海拔3616m。二维超声风速/风向传感器和空气温湿度传感器分别架设在2m、4m、8m处,共3层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_2m、WS_4m、WS_8m)(单位:米/秒)、风向(WD_2m、WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_2m、Ta_4m、Ta_8m和RH_2m、RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_20cm、Ms_40cm)(单位:百分比)、土壤温度(Ts_20cm、Ts_40cm)(单位:摄氏度) 、土壤水势(SWP_20cm,SWP_40cm)(单位:千帕)、土壤电导率(EC_20cm、EC_40cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常数据以-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
该数据集包含了2020年8月16日至2020年12月31日兰州大学寒旱区科学观测网络民勤站气象要素梯度观测系统数据。站点位于甘肃省武威市民勤县,地处中国西部地区巴丹吉林沙漠和腾格里沙漠之间。观测点的经纬度是103.668E,39.208N,海拔1020m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下10cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_10cm、Ms_20cm)(单位:百分比)、土壤温度(Ts_10cm、Ts_20cm)(单位:摄氏度) 、土壤水势(SWP_10cm,SWP_20cm)(单位:千帕)、土壤电导率(EC_10cm、EC_20cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常数据以-6999代替(因SDI12通道总线故障,风速风向、土壤三参数、土壤水势等传感器较大范围缺失数据);(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
该数据集包含了2020年1月1日至2020年12月31日兰州大学兰州大学寒旱区科学观测网络临泽站气象要素梯度观测系统数据。站点位于甘肃张掖临泽新华镇古寨村,下垫面是农田。观测点的经纬度是100.062E,39.238N,海拔1402m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_10cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),缺失或异常值以-6999替代;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。
赵长明, 张仁懿
青藏高原湖泊广泛发育有古湖岸线,记录了古水位的变化历史,由最高一级古湖岸线所代表的古大湖的发育时代具有较大争议。利用光释光测年技术,测定古湖岸线沉积地层中的滨湖砂的埋藏年代,可获取古湖岸线或古湖发育的时代。本数据包含有高原西北部三个湖泊最高一级古湖岸线的光释光年代。测年方法基于近年来发展出的钾长石高温红外释光测年法,有效解决了研究区石英释光信号不适用于测年的问题。本数据可为青藏高原古大湖的演化历史提供关键基础资料。
赵晖, 张帅, SHENG Yongwei
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
朱立平
本数据集提供青藏高原124个湖泊实测水质参数,湖泊总面积为24,570 平方千米,占青藏高原湖泊总面积的53% 。实测湖泊水质参数包括水温、盐度、pH、叶绿素a浓度、蓝绿藻(BGA)浓度、浊度、溶解氧(DO)、荧光溶解有机物(fDOM)和水体透明度(SD)。测量方法中,盐度使用电导率是传感器测量获得的比电导率(SpC)转换得到,叶绿素a和蓝绿藻(BGA)浓度使用总藻类荧光传感器测量,温度使用温度传感器测量,pH使用pH传感器测量,溶解氧(DO)使用光学溶解氧传感器测量,fDOM使用荧光传感器测量,单位是硫酸奎宁单位(QSU),浊度使用浊度传感器测量,以Formazin比浊法为单位(FNU)。上述传感器测量获取的参数均使用YSIEXO或HACH多参数水质仪测量,测量时,传感器位于湖面以下约10-20厘米处。湖泊水体透明度使用塞氏盘测量法进行测量。
朱立平
2017年,利用重力采样器在青海湖均匀采集了27个表层沉积物,取顶部1cm为表层,取回实验室后冷冻干燥并研磨成粉末状。测试有机碳氮含量之前需要用1mol/L的盐酸搅拌反应10小时以上,使碳酸盐被完全去除,再烘干研磨,有机碳氮在元素分析仪上测试。总无机碳含量是将全岩粉末样品用红外光谱测试碳酸盐含量,再反算为总无机碳含量。有机碳和无机碳含量组成了湖泊的总碳含量,两者含量接近,表明青海湖无机碳埋藏和有机碳埋藏通量相当。
孟先强
本数据包含了2019年度,在色林错和纳木错周遭地区,共21个湖泊的底栖动物数据,采样主要在沿岸带使用底拖网和深水区使用Ekman采集器,将两种途径获取的材料整合之后,给出了各个湖泊底栖动物数据相对丰度,主要湖泊底栖种类分别为湖沼钩虾、水龟虫和摇蚊幼虫,但是螺类以及介形类出现频率较低,可能与采样点设置有关。该数据进一步将不同类型的底栖划分为21个分类单元,提高了识别精度和认知范围,将为高原湖泊水生动物多样性和渔业资源评估提供参考。
唐红渠
本数据集为青藏高原164个湖泊1978~2017年日尺度湖面温度产品。首先基于MOD11A1产品获取湖面像元均值得到2000~2017年日尺度湖面温度序列。其次改进湖泊水温模型air2water以实现全年湖面温度的逐日连续模拟。进而以气象站逐日气温数据为模型驱动数据,MOD11A1监测的湖面温度为模型率定和验证数据,重建青藏高原1978~2017年日尺度湖面温度序列。与遥感监测结果相比,所有湖泊纳什效率系数高于0.6,偏差分布于±055℃之间。数据集可用于分析青藏高原湖面温度过去几十年的长时序变化,对于评估气候变暖对青藏高原湖泊水热平衡、水质及湖泊生态系统变化具有重要意义。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
数据包含:浮游动物物种名录;浮游动物密度;显微镜镜检;高通量测序;数据完善;为青藏高原湖泊构建原始数据集,浮游动物是湖泊水生态调查不可缺少的环节,在系统中处于承上启下的位置,是食物网物质循环和能量流动的重要载体,系统调查和研究青藏高原湖泊浮游动物的群里组成和生物多样性,对于认知青藏高原湖泊生态系统的稳定性和弹性尤为重要,此外浮游动物对环境变化十分敏感,其结构和功能类群的变化可以指示环境压力的强度和变化幅度。
李芸
2019年夏季于西藏纳木错色林错地区采集了22个湖泊的湖水样品,将其装入塑料瓶内,部分样品利用碱度试剂盒现场滴定获得CO32-和HCO3-离子浓度,其余样品放置冰箱冷藏保存,带回实验室后,利用ICP-OES测试主要阳离子K+, Na+,Ca2+,Mg2+离子浓度,利用阴离子色谱仪测试HNO3-,SO42-、F-和Cl-离子浓度。结果显示,22个湖泊中,Ca2+离子浓度最高为越恰错的34.8ppm,最低为张乃错的1.8ppm,平均值为11.9ppm。K+离子浓度最高为懂错的745.6ppm,最低为木纠错的1.0ppm,平均值为270.9ppm。Mg2+离子浓度最高为江错的1632.8ppm,最低为木地达拉玉错的2.5ppm,平均值为180.1ppm。Na1+离子浓度最高为达则错的5446.0ppm,最低为木纠错的13.8ppm,平均值为1675.3ppm。F-离子浓度最高为0.3 mmol/L,最低为0.1 mmol/L,平均值为0.1 mmol/L。Cl-离子浓度最高为73.0 mmol/L,最低为0.4 mmol/L,平均值为19.0 mmol/L。NO3-离子浓度最高为0.2 mmol/L,最低为0.1 mmol/L,平均值为0.2 mmol/L。S042-离子浓度最高为219.3mmol/L,最低为0.1mmol/L,平均值为33.3 mmol/L。CO32-离子浓度最高为54.0 mmol/L,最低为0.0 mmol/L,平均值为15.5 mmol/L。HCO3-离子浓度最高为50.7 mmol/L,最低为2.0 mmol/L,平均值为21.1 mmol/L。
孟先强
本数据集包括西藏和青海水资源统计数据,数据来源于《西藏水资源公报》和《青海水资源公报》,统计尺度为市级单元尺度,包括青海省的西宁市、海东市、海北州、海南州、黄南州、果洛州、玉树州和海西州等市级单元,西藏的拉萨、昌都、山南、日喀则、那曲、阿里和林芝等市级单元;变量包括年降水量、地表水资源量、地下水资源量、重复计算量、水资源总量、人均水资源量、产水模数、地表水源供水量、地下水源供水量、总供水量、农业用水量、工业用水量、生活用水量、生态环境用水量及总用水量等。该数据集可用于青藏高原水资源管理和生态环境保护等领域。
刘兆飞, 姚治君
数据由三个字段组成:经度、纬度和湖泊深度。利用声呐设备在湖泊上走航测量得到的水深数据,GPS同步测量得到的经度和纬度。利用湖水盐度和温度数据校正声呐测得的深度数据,并剔除数据异常点。利用水深数据可以插值形成湖泊水下地形图。利用水下地形图可以计算湖泊的储水量,评估青藏高原湖泊总水量。利用水下地形图结合遥感数据还可以研究青藏高原湖泊水量变化特征及其影响因素,是亚洲水塔水量变化研究的重要组成部分。
朱立平
SSTG数据集是2002-2019年的全球海面温度数据,以摄氏度为单位,时间分辨率为月,空间分辨率为0.041°。 数据集是由2种红外辐射计(MODIS,AVHRR)及3种被动微波辐射计(AMSR-E,AMSR2,Windsat)得到的逐日海面温度卫星反演数据和逐日海面温度观测数据相结合,通过一个温度深度和观测时间校正模型校正后产生的。精度评价表明,重建后的数据集有明显改进,可以用于海洋中尺度现象分析。
毛克彪
青海省典型小流域航拍数据集(Aerial photography dataset of typical small watersheds in Qinghai Province)来源于2020年7月第二次青藏高原科考,使用大疆无人机对青海省民和县小流域以及青海湖湖东地区地表样带进行航拍,包括正射影像(包含红绿蓝三个波段)、多光谱、点云数据。该数据集中的所有文件均可以用ArcGIS、ENVI软件直接打开查看、处理。
苏正安
本数据集包含了青藏高原色林错流域和拉萨河流域典型高寒湿地的水体理化性质和水环境指标,包括溶解氧、pH值、电导率、水温、总磷、总氮、总有机碳、主要阴离子和主要阳离子浓度等。通过野外采样获取湿地水样,在实验室内通过化学分析获得各项水体理化指标数据。部分指标使用仪器现场测定。数据分析方法符合有关国家标准要求,结果可靠。数据可作为青藏高原湿地水环境的本底数据,评估湿地生态环境质量,并研究气候变化对高寒湿地的影响。
熊雄
南峰地区河流的最大月径流量多出现在7月份,这是与该时期的降水量大、气温高有关系。对于本地区北部的河流,其类型多属融水补给为主的河流。为此,在夏季,该地区降水量大,雨热同期,冰雪融水补给量也急剧加大;而在冬季,降水与融水补给量全大大减少,地下水补给量占年径流的比重又小,导致了该地区河川径流年内变化大,年内分配更趋于不均匀。 南峰地区的河流泥沙观测资料,要比河川径流的观测资料更为缺乏。目前,该地区只有雅鲁藏布江鲁霞水文站有河水悬移质泥沙的观测。现只能依据该站的泥沙资料,并根据实地考察,以及参照西藏其它地区的河流泥沙观测资料,对本地区河流的泥沙特性,进行较粗浅的分析。(最后两个表)
杨逸畴, 彭补拙
依据径流分割的方法,对该地区的雅鲁藏布江鲁霞水文站、尼洋曲久巴水文站、易贡藏布贡德水文站及麻果龙藏布嘎布通水文站的典型平水年或平水年(因实测水文资料年限太短,参照邻近水文站资料与气象资料,只能选取为平水年)进行径流补给分析(表1)。从南峰地区内已建(曾建)的四个水文站资料分析,测站以上集水面积内的平均年径流深以麻果龙藏布的嘎布通站为最大,干流鲁霞站为最小(表2)。有些河如雅鲁藏布江干流和尼洋曲,一条河上建立多个水文观测站,这样还可以计算出水文站区间的平均年径流深值。根据已有水文站的实测资料和年径流深等值线,可以对南峰地区的河川年径流量进行估算(表3)。
杨逸畴, 彭补拙
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
结合MODIS积雪产品Terra/Aqua(500 m)与IMS(4 km),发展了青藏高原每日无云高分辨率积雪产品 (TAI, 500 m)。其相对于原始的MODIS Terra(云覆盖46.6%)和Aqua(55.1%)、及MODIS Terra-Aqua结合(37.3%),将云遮蔽全部去除。同时,提高了积雪成图,新生成的TAI产品的积雪面积为19.1%,相对于原始的MODIS Terra/Aqua及MODIS Terra-Aqua结合(积雪面积4.7%~8.1%),显示了大大的提高。与青藏高原105个站点雪深数据验证表明,TAI产品的总精度为94%,相对于MODIS Terra(55%)、MODIS Aqua(50%)、及MODIS Terra-Aqua结合(64%),都显示了较大的提高,特别是雪深大于4 cm时效果较好。
张国庆
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
本数据为锡尔河中游苦盏水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。 资料时段:2019年11月2日至2020年12月5日。 资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m) 站点位置:40°17′38″N, 69°40′18″E,320m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,重启后第一条数据为0,导致小时平均值出现0。2019年12月5日供电改造后恢复正常 六、雨量数据中有部分缺失及-8.191mm等非正常数据,应该予以剔除和说明。 数据缺失4.10-5.3数据,已补充,-8.191mm类似这种异常数据已经标记
霍文, 尚华明
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
青藏科考区历史溪河洪水分布数据包括经纬度、发生的地址、基本引发类型、日期以及造成的危害等属性信息。数据来源于灾害调查部门的调查统计。在原数据基础上,进行必要的数据质量控制。根据原数据的类型描述、主要引发因素、发生的位置结合30米基础地形进行洪水类型的分析和划分。该数据可以作为分析历史洪水灾害的参考数据。数据格式为点矢量shp格式,可以直接用ArcGIS打开。该数据结合降水、气象等观测资料,可以用于青藏高原对应区域的洪水风险分析。
王中根
(1)数据内容:卡拉库里湖2011-2019年水位日变化,观测点坐标为东经75.03°,北纬38.43°,海拔3670米。(2)数据来源和处理方法:所用仪器为HOBO压力式自动水位计(U20-001-01),记录频率为30分钟。结合附近的气象站气压数据进行矫正,剔除错误数据和异常值之后,通过计算获取水位日值的变化数据。(3)数据质量描述:由于冬季标尺遭到破坏,该数据以每年开始观测为基准。受施工等人为因素的影响,部分时段的数据缺失。(4)数据应用前景:该数据可应用于湖泊水文、高寒区水文过程等科研领域。
谢营
该数据集是2014-2020年每年4-11期间不定期在然乌湖中湖岸边利用YSI EXO2水质多参数测量仪测量的实测值,采样时间间隔为0.25s-1s,此数据为仪器稳定后的平均值,采样地理坐标为:经度96.795296,纬度29.459066,海拔高度3925m。 测量参数为水温、电导率、溶解氧和浊度等,具体参数单位在表头中标明。数据剔除部分明显异常值,文档中为空值,使用时请注意。该数据将不定期更新,可为然乌湖流域的水化学、湖泊微生物或湖泊理化性质等的相关科研人员使用。
罗伦
该数据为中国科学院藏东南高山环境综合观测研究站2018年在易贡藏布流域架设自动气象站数据(AWS,Campbell公司),地理坐标为北纬30.1741,东经94.9334,海拔2282m,下垫面为草地。 数据包括气温(℃)、相对湿度(%)、风速(m/s)、水汽压(Kpa)和气压(mb)日算术平均数据和降水的日累计值,原始数据为10分钟记录一个平均值。温湿度采用HMP155A温湿度探头测定,降雨量仪器型号为TB4,大气压力传感器探头为PTB210,风速传感器为05103,这些探头离地面2 m高。数据质量方面:原始数据质量较好,缺失较少。该数据站点为青藏高原较低海拔的气象站,后续会不定期更新,可供研究气候、水文、冰川等的科研工作者使用。
罗伦
本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。资料时段:2019年11月3日至2020年12月3日。资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m)。站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,初次启动第一条数据是0,导致小时平均值出现0。经2020年7月26日供电改造后,数据恢复了正常,2020年9月底又开始出现供电不足,经2020年12月25日二次供电改造,数据恢复正常 六、水位监测情况进行说明(如7358行,2020/11/3 16:00,最高水位6.7m,最低水位为0m,如何解释?另,最高水位的最大值是6.7m,数据中多次出现这个最高水位的值,似乎显示了6.7m是监测数据的极限值,实际情况是否如此? ):6.7m是设置的初始传感器距离河床底部高度,出现6.7m是传感器刚启动时候的异常数据,是设备供电不足导致断电重启引起传感器重启,初次启动出现这种异常值,经2020年12月25日供电改造后,数据恢复了正常
霍文, 尚华明
数据包括三个主要典型案例,2000年易贡滑坡堰塞湖溃决洪水模拟、2018年金沙江上游的白格滑坡堰塞湖溃决模拟以及川藏铁路穿越的沃卡曲流域的场景模拟。数据为堰塞湖溃决后沿下游流动的水位高程数据,带空间投影坐标信息的tif格式,为横轴墨卡托投影。对于典型的案例使用动态自适应网格的二维洪水过程模型——NewFlood进行模拟分析。模型的输入资料为地形数据、驱动数据等。地形资料采用SRTM 30米分辨率DEM数据,其中沃卡曲由于比降大,堰塞湖的水域范围相对较小,因此将DEM进行重采样后再进行模拟。模拟结果可以为开展相应流域的洪水动态过程分析提供参考。
王中根
该数据集记录了青海省西宁市地表水监测断面水质状况数据(2015.7-2019.7)。数据统计自青海省生态环境厅,数据集包含15个数据表,分别为:西宁市地表水2015年7月监测断面水质状况,西宁市地表水2015年11月监测断面水质状况,西宁市地表水2016年1月监测断面水质状况,西宁市地表水2016年2月监测断面水质状况等,数据表结构相同。 每个数据表共有6个字段,例如西宁市地表水2015年7月监测断面水质状况表: 字段1:序号 字段2:断面名称 字段3:执行标准等级 字段4:实际水质等级 字段5:超标项目
青海省生态环境厅
该数据集记录了青海省海西州2019年1月-2020年6月地表水水质监测状况信息公开表。数据整理自海西州生态环境局。数据集包含18个数据表,分别为:海西州2019年1、2、3、4、5、6、7、8、9、10、11、12月地表水水质监测状况信息公开表,2020年1、2、3、4、5、6月地表水水质监测状况信息公开表,数据表结构相同。 每个数据表共有11个字段,例如2019年1月地表水水质监测状况信息公开表: 字段1:序号 字段2:地区 字段3:水体 字段4:断面名称 字段5:断面级别 字段6:监控单位 字段7:监测频次 字段8:水质目标 字段9:是否达标 字段10:超标因子 字段11:备注
青海省海西州生态环境局
1) 数据主要包括2016-2018年UIB地区六条典型冰川的GPR实测冰厚与GlabTop2模拟的2010s的UIB全流域的冰储量,8个水文站的径流数据 2) 数据加工方式:通过输入TanDEM-X与巴基斯坦冰川编目等,从而在GlabTop2模型中生成模拟冰厚值。 2) 数据质量描述:GlabtOP2模拟冰厚值的空间分辨率为30 m.误差为15%,GPR实测的最大冰厚的误差为230.2 ± 5.4 m.
张寅生
1) 数据内容 本数据集包含澜沧江-湄公河流域流向、汇流累积和矢量河网信息。 2) 数据来源及加工方法 本数据集采用了遥感蚀刻方法(Remote Sensing Stream Burning, Wang et. al, 2021),融合了高精度高程模型MERIT-DEM和哨兵2号光学影像。 3) 数据质量描述 经验证,本数据集具备较高的空间精度(Wang et. al, 2021)。<br /> 4) 数据应用成果及前景 本数据集提供了基础的河流网络及其汇流信息,可用于水文模型、陆面过程模型、地球系统模式等模拟用途,也可以用于制图和空间统计分析。
王子丰
本数据集包括中亚大湖区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的内陆水域数据,包括河流,运河和湖泊的分布。各个国家的线状和面状要素分别存储在不同文件中。该数据集来自世界数字地图(DCW),其主要来源是美国,澳大利亚,加拿大和英国制作的美国国防测绘局(DMA)的操作导航图(ONC)1:1,000,000比例纸质地图系列。DCW数据库最后更新至1992年,并于2006年开始免费提供。
徐晓凡, 谈明洪
印度洋是海气相互作用非常活跃的区域,它与太平洋共同构成的“印度洋-太平洋暖池”是全球海温最高、体积最大的暖水区,不仅通过季风将大量的热量和水汽输送到热带外海域,而且热带印度洋上空的强对流也在全球气候变化中扮演重要的角色。研究印度洋本身的热力性质以及海气相互作用,需要准确、可靠的格点化三维海温数据集。 本数据集由印度洋三维格点温度构成,其水平范围覆盖印度洋(30°E-105°E,45°S-30°N),垂直方向从表层到2000米共41层,水平分辨率为1/4°,时间分辨率是逐月。数据采用“表层-次表层”反演技术和最优插值方案制作。首先,“表层-次表层”反演过程使用机器学习算法(广义神经网络)将遥感的海表面温、海表面高度异常等信息投影到次表层,形成反演剖面(或“伪”剖面)。进一步,挑选高质量的反演剖面,补充到英国气象局提供的海洋次表层现场剖面数据库中,使用最优插值方案进行融合,得到最终的融合数据集。通过与现有的IAP、EN4以及Ishii数据集相比,该数据集能够抓住印度洋主要的海温变化特征,高分辨率版本可以提取更多中小尺度信号。该数据集分辨率高,融合了现场剖面和遥感资料的优势,有望在印度洋海气相互作用方面发挥作用。
王公杰, 赵亮
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
利用长时间序列Landsat遥感数据(1976年的KH-9数据为辅助数据),人工目视解译获取了念青唐古拉山西段近40年(1970s-2018)共5期冰湖数据,对大于0.0036平方千米的冰湖从类型、规模、海拔、流域4个方面的变化特征进行了详细分析。研究发现,念青唐古拉山西段冰湖持续扩张,数量从1976年的192个增加到2018年的299个,增加了107个(+56%),相应地总面积由原来的6.75±0.13平方千米扩张到9.12±0.13平方千米,增加了2.37平方千米 (+35%);冰湖的类型正发生明显的变化;较小规模的冰湖变化较快;冰湖的扩张正向更高海拔发展。
罗玮, 张国庆
本数据集为青海可可西里地区湖泊要素数据集,详细记录了可可西里地区主要湖泊特征和水质采样分析数据。青海可可西里地区湖泊众多,是青藏高原湖泊集中分布区之一。该区域湖泊发育的基本特点是:数量大,类型多,结构复杂。据初步统计,面积大于1km2的湖泊有107个,总面积为3825km2,湖泊度约为0.05。该数据集原始数据数字化自《青海可可西里地区自然环境》一书,具体包括了35个主要湖泊特征数据和60个湖泊水体化学分析数据。本数据集对于研究青海可可西里地区提供了基础数据,对于相关领域的研究具有参考价值。
李炳元
中亚农业水资源脆弱性数据集基于气象、土地覆盖、地形和社会经济数据, 依据脆弱性概念框架, 从暴露度、敏感度和适应度 3 个方面选取 18 个指标, 建立了农业水资源脆弱性评价指标体系, 采用等权重法和主成分分析法确定指标权重, 对中亚农业水资源脆弱性进行了评价及特征分析。对部分原始各个栅格数据进行比较,从原始目标栅格最左上角开始,依次向相邻的右、下栅格延伸,四个栅格(即0.5°)取中位数合并为一个栅格,并且该中位数作为四个栅格中心点对应的地理坐标的数值,消除栅格间的极端数值情况。数据提供了1992-1996、1997-2001、2002-2006、2007-2011、2012-2017和1992-2017六个时间段,空间分辨率为0.5°乘以0.5°。数据集可为中亚五国农业水资源供需和开发利用分析等提供基础数据支撑。
李兰海, 于水
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件