该数据集包含了3类数据,分别是:(1)2020年青藏高原热熔塌陷区土壤理化指标和碳氮、植物碳氮和微生物碳氮数据。这些数据为评估青藏高原碳氮循环过程提供了重要参考。该数据主要是通过2020年在青海刚察考察时实地观测获得。获得的植物和土壤样品带回实验室后进行初步分类、去除杂质,再放入65°C的烘箱中烘干至恒重。测量土壤和植物中的碳氮组分。共获得了4个典型样点的40个样方。该数据可用于揭示土壤和植物碳氮组分的空间变化规律,理解碳氮组分在土壤-植物-微生物体系中的分配情况。 (2)2019年青藏高原草原水平样带土壤营养成分的数据。该数据主要是通过2019年的样带考察时实地打土钻获得。样方土壤样品带回实验室进行初步分类、去根、筛去杂碎石头等杂质。将土壤样品自然风干,然后混合均匀平均分成两份(每份100g左右),一份用2mm土壤筛过筛获得过筛样,另一份使用球磨仪进行土样研磨获得研磨样。包含的内容要素有:壤全C、N、P、K、Fe、Mn 、Cu、Zn、Ca、Na 和全Mg的含量;土壤速效P、K、Fe、Mn、Cu、Zn、Ca、Na 和Mg的含量。土壤全C、全N的测定:对研磨样进行包样,然后采用CHNOS元素分析仪(Vario EL III,GmbH, Hanau, Germany)测定全C、全N的含量。土壤全量元素测定:使用压片机对研磨样进行压片,然后采用X射线荧光光谱仪(XRF, PANalytical Axios mAX, Almelo, The Netherlands)测定样品的全P、K、Fe、Mn 、Cu、Zn、Ca、Na 和全Mg的含量。土壤速效态元素测定:对过筛样进行浸提处理,提取滤液通过电感耦合等离子体发射光谱仪(iCAP 6300, Thermo Electron Corporation, Waltham, MA, USA)测定速效P、K、Fe、Mn、Cu、Zn、Ca、Na 和Mg的含量。共获得了13个样带样点。39个样方,每个样方获得三个土壤层次(即0~10,10~20,20~30cm的土壤层次)。因此,每个样方的每个土壤营养元素共有117个数据(C、N、P、Mn、Zn等);该该数据是此此科考获得的直接获得的实地土壤样品,风干过筛研磨后通过相关分析仪(上述)按相应测试规范测定,质量可靠,可供分析不同区域土壤碳氮含量或密度的分布规律、评估土壤养分状况、生态系统的可持续性等,特别是可供降水变化驱动的碳氮循环研究及其建模使用,具有较为广泛的使用价值和应用前景。 (3)2019年青藏高原草原水平样带植被生产力数据。该数据主要是通过2019年的样带考察时实地观测获得。获得样方植物样品后带回实验室进行初步分类、去除碎石等杂质,再放入65°C的烘箱中烘干至恒重。根据其样方生物量换算为生态系统碳循环关键要素--植被生产力(NPP)。共获得了13个样带样点,39个样方的观测数据。数据的内容要素包含地上、地上生物量及NPP。单位为克每平方米;该数据是此此科考获得的实地观测资料,质量可靠,可供分析不同区域植被生产力的分布规律、植被覆盖、生态系统的碳储量评估等,特别是供降水变化驱动的碳循环研究及其建模使用,具有较为广泛的使用价值和应用前景。
许振柱, 杨元合, 张峰
本数据是基于Chen et al. 2016, Chen et al. 2011, Chen et al. 2013 所使用的2008年改则无线电探空观测数据基础之上再加工处理成的资料,加工的大气风速、风向、气温、相对湿度、气压的垂直分辨率为20m,共处理了2008年三个观测阶段的资料,即IOP1,IOP2和IOP3。IOP1从2008年2月25日开始到2008年3月19日,IOP2从2008年5月13日到6月12日,IOP3从2008年7月7日到7月16日,一天4次观测。原始无线电探空仪型号为Vaisala RS-92,原数据为每2s一条数据记录,根据Chen et al. 的文章需要对该资料采用高度等间距法对所有变量进行了线性插值。
陈学龙, 马耀明
本数据集为对南羌塘的班公湖、改则、东巧和安多地区花岗岩进行系统的多接收激光剥蚀电感耦合等离子体质谱(Laser Ablation MultiCollector Inductively Coupled Plasma Mass Spectrum,LA-MC-ICPMS)锆石Hf同位素测试得出的结果。 数据按照实验室标准获得,质量符合实验室要求。 数据主要用于青藏高原地质研究。
刘德亮
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件