本数据集为1960-2019年青藏高原逐年的降雨侵蚀力的栅格数据集。利用青藏高原及周围150km范围内129个站点1960-2019年的日降雨资料计算降雨侵蚀力,其中74个站点位于青藏高原内部,55个站点位于外部,计算方法与全国第一次水利普查的算法一致,采用WGS_1984坐标系和Albers投影(中央经线105°E,标准纬线25°N和47°N),然后逐年进行克里金插值生成栅格图,空间分辨率为250m。降雨侵蚀力是土壤侵蚀的主要动力因子,也是CSLE、RUSLE等模型计算的基础因子。整编完善的长时间序列日降雨资料的数据精度高,提高降雨侵蚀力估算的准确性,也有助于进一步精确估算青藏高原土壤侵蚀量。
章文波
综合利用站点观测输沙量、气象及遥感观测资料,改进通用水土流失方程(RUSLE)的降雨-融雪径流侵蚀力计算方案,并基于改进的RUSLE模型完成重点侵蚀区“一江两河”坡面侵蚀量的计算,获得了2001-2015年该区域多年平均降雨侵蚀力因子、土壤可蚀性因子、坡长坡度因子、植被覆盖因子、水土保持措施因子以及土壤侵蚀速率的空间分布。该数据集可解析年楚河流域“水少沙多”和拉萨河流域“水多沙少”的现象,为区域水土保持工作提供理论支持。
王莉, 张凡
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
1)数据内容为65国平均降雨侵蚀力R栅格数据,空间分辨率为1km。2)数据源为Climate Prediction Center(CPC)发布的基于全球站点数据,基于此生成的0.5°×0.5°网格日降雨数据,从而计算了65国降雨侵蚀力R因子。3)采用中国气象局全国2358个气象站1986-2015年日降雨数据计算R值,对建立CPC数据源计算的R值进行复核修订,最终取得的数据质量良好。4)降雨侵蚀力R因子作为CSLE模型的动力因子,其数据可分析65国土壤侵蚀模拟及其空间格局分析,对于研究土壤侵蚀机理等具有重要意义。
章文波
泛极第三极20国土壤可蚀性因子(K)数据,基于国际土壤信息参比中心(International Soil Reference and Information Centre, ISRIC)网站(https://files.isric.org/soilgrids/latest/data/)下载的7.5弧秒分辨率土壤属性数据计算,所用数据包括土壤黏粒含量(%)、粉粒含量(%)、砂粒含量(%)、土壤有机碳含量(g/kg)、土壤质地类型。利用Wischmeier(1978)在USLE手册第二版中提出的土壤可蚀性因子算法、本项目研发的土壤可蚀性因子计算工具(K_Tool),计算得到与输入数据分辨率(1弧秒,尺度地区约25m)相同分辨率的土壤可蚀性因子图。泛第三极20国土壤可蚀性因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时也是分析泛第三极土壤特征的基础数据。
杨勤科
泛第三极20国坡度坡长因子(LS)数据集,基于公开的1弧秒分辨率SRTM数字高程数据(Shuttle Radar Topography Mission, SRTM;http://srtm.csi.cgiar.org),经过去接边、去除伪条纹等和滤波除噪等预处理,利用CSLE模型中的坡度坡长因子算法和本项目研发的坡度坡长因子计算工具(LS_Tool),计算得到7.5弧秒分辨率坡度坡长因子图。泛第三极20国坡度坡长因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时分析泛第三极20国侵蚀地形特征(如高程、坡度、坡度等宏观分布和微观格局)的基础数据,对于该地区地貌特征、地质灾害特征的分析,也具有参考价值。
杨勤科
1)数据内容包含重点区域20国2015年土壤侵蚀强度栅格数据,空间分辨率为300米。2)基于重点区域20国13000个调查单元数据,采用中国土壤侵蚀预报模型(CSLE),计算降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子以及耕作措施因子。然后按土类进行土壤侵蚀量插值并进一步进行强度分级,得到重点区域20国土壤侵蚀强度图。3)对土壤侵蚀强度数据进行空间格局合理性分析,数据质量良好。4)土壤侵蚀强度数据对理解重点区域20国土壤侵蚀空间格局及开展水土流失治理等具有重要意义。
章文波
1)数据内容为重点区域20国30年(1986-2015)平均降雨侵蚀力R栅格数据,空间分辨率为300米。2)采用Climate Prediction Center (CPC)发布的基于全球站点数据生成的0.5°×0.5°网格日降雨数据计算重点区域20国降雨侵蚀力R因子。3)采用中国气象局全国2358个气象站1986-2015年日降雨数据计算R值,对采用CPC数据源计算的R值进行复核校验,发现CPC数据计算的R值系统偏低,并对CPC数据计算的R值结果进行修订,最终取得的数据质量良好。4)降雨侵蚀力R因子作为CSLE模型的动力因子,其数据对重点区域20国土壤侵蚀的模拟及其空间格局分析等具有重要意义。
章文波
1)数据内容包括2019年哈萨克斯坦17个小流域2.5米分辨率土壤水蚀模数数据集(2019年),数据单位为t/(hm2·a)。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算17个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。17个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
1)数据内容包括2019年巴基斯坦15个小流域2.5米分辨率土壤水蚀模数数据集(2019年),数据单位为t/(hm2·a)。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算15个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。15个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
章文波
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件