本数据包括Excel以及Jpg格式图。Excel数据包括:全岩常量和微量元素、Rb-Sr和Sm-Nd的含量和同位素比值。 使用传统技术将所有样品粉碎至小于200目。在中国广州ALS Minerals/ALS Chemex实验室进行了全岩常量和微量元素分析。 在中国科学技术大学壳幔物质与环境重点实验室,采用同位素稀释法测定了Rb-Sr和Sm-Nd的含量和同位素比值。 Jpg图片格式数据包括:(1)张八岭和肥东侵入岩的野外照片和显微照片(交叉偏振光)。(2)张八岭侵入岩样品中典型锆石的阴极发光(CL)图像。(3)研究区域的简化地质图(a) 研究区域及周边地区(b) 研究区包括张八岭和肥东地区。(4)张八岭侵入体锆石U-Pb同位素的一致性图。(5)肥东侵入体锆石U-Pb同位素一致性图。(6)TAS火成岩图解 (7)MgO与SiO2(a)和Mg#与SiO2(b)的关系图(8)球粒陨石标准化稀土模式(9)Sr/Y与Y)和(La/Yb)N与YbN图表(10)张八组中生代岩浆岩(La/Yb)N和YbN代表La/Yb和Yb归一化的球粒陨石。 (11)张八组晚中生代岩浆岩的初始Sr–Nd同位素组成。大别高Sr/Y花岗岩类资料 (12)晚中生代铅的初始同位素组成 (13)张八组岩浆岩年龄分布图组 (14)锆石张八组侵入岩的Hf(t)与U–Pb年龄图以及其他地区岩石的数据。 (15)张八组晚中生代岩浆岩。 通过本数据库可为研究张八岭北部和肥东南部两个地区的深部地壳过程和构造亲缘关系提供依据。
闫骏, 黎乙希
该数据集包含了:云南腾冲地块早白垩纪高镁闪长岩和花岗闪长岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的数据用于在腾冲地块东缘识别与俯冲沉积物相关的早白垩世高镁闪长岩,为班公湖-怒江缝合带东南延伸提供了证据。研究成果发表于国际知名期刊Lithos上。
马鹏飞
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪玄武岩、闪长岩、花岗闪长岩和花岗岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的晚二叠纪的富Nb玄武岩年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素可用来指示古特斯哀牢山洋俯冲与峨眉山地幔柱相互作用的过程,并发表于国际知名期刊Geophysical Research Letters上。所获得的闪长岩-花岗闪长岩的锆石年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素用来示踪古特斯哀牢山洋东向俯冲过程,为洋盆的东向俯冲提供了新的证据,并发表于国际知名期刊Lithos上。所获的A型花岗岩的年代学数据、锆石Hf-O同位素数据和全岩主微量数据和Sr-Nd同位素数据可被用于指示古特斯哀牢山俯冲与峨眉山地幔柱相互作用过程,并发表于国际知名期刊GSA Bulletin上。
徐健
本数据为长江下游A型花岗岩的全岩主、微量元素、Nd同位素地球化学数据,以及锆石原位Hf-O同位素数据和磷灰石主、微量元素地球化学数据。样品为采自安徽花园巩岩体的正长花岗岩和石英正长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Nd同位素组成数据由MC-ICP-MS分析获得。锆石原位O同位素组成由SIMS分析获得,锆石原位Lu-Hf同位素组成的测试选择与O同位素相同的位置点进行,数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究A1和A2型花岗岩共存的成因,以及中生代晚期长江中下游地区A型花岗岩形成的构造环境。
江小燕
本数据为埃达克质侵入岩的全岩主微量元素、Sr-Nd同位素地球化学数据以及锆石原位微量元素数据、Hf-O同位素和U-Pb测年数据。样品为采自西藏地区冈底斯南部的冲江矿床(钻孔CJZK1407与CJZK1119)的黑云母二长花岗质斑岩。采自钻孔CJZK1407的样品全岩主量元素数据由XRF分析获得,而采自钻孔CJZK1119的样品的全岩主量元素数据由ICP-AES分析获得。全岩样品的微量元素数据均是由ICP-MS分析获得。全岩样品的Sr-Nd同位素数据由MC-ICP-MS分析获得。锆石U-Pb同位素测年以及微量元素数据由LA-ICP-MS分析获得。锆石O同位素数据由SHRIMP分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据结果真实可靠。通过获得的数据可以研究埃达克岩的成因,约束冲江斑岩铜矿的成因及构造背景。
胡永斌
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪以及保山地区寒武纪-志留纪碎屑地层的沉积岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素组成。岩石样品的年代学数据是通过对碎屑锆石进行激光剥蚀等离子体质谱(LA-MC-ICPMS)测定的,对标准样品单颗粒锆石91500测试的误差优于5%;主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。所获得的的哀牢山二叠纪-三叠纪碎屑沉积岩的碎屑锆石年龄谱,以及主微量元素组成可以用来有效限制古特提斯哀牢山洋从俯冲到闭合的演化过程,目前已经发表在国际知名期刊Tectonics、GSA Bulletin和Journal of Asian Earth Sciences,和国内著名期刊《大地构造与成矿》之上。数据将来可被广泛引用,用于限制古洋盆的演化历史研究。所获得的的保山地区的寒武纪-泥盆纪碎屑岩的碎屑锆石年龄谱以及Hf同位素数据可以用来有效限制保山地块在早古生代的大地构造位置,相关数据已经发表在国内知名期刊《岩石学报》上,数据将来可被广泛引用,用于进行冈瓦纳大陆重建的工作中去。
徐健
本数据为锡石的U-Pb年龄和原位主、微量地球化学数据。样品来自于中国西南部个旧地区的高松锡铜矿田,其中样品GS-1采自矽卡岩中的锡石-硫化物矿床,样品LTB-1与LTB-2采自碳酸盐岩中的锡石-氧化铁±硫化物矿床。锡石的主量元素地球化学数据是通过电子探针分析获得,锡石的原位U-Pb年龄和微量元素地球化学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得。通过获得数据可以约束高松锡铜矿床中锡矿化的时间和锡石的沉淀环境,从而得出层状锡石-氧化铁±硫化物矿石的成因。
郭佳
数据集包含川藏铁路沿线泥流阶地分布数据与川藏铁路沿线碎屑散粒体分布数据,川藏铁路沿线泥流阶地分布数据基于近几年我国高分二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出的川藏沿线冻融泥流阶地分布图。最大单块泥流阶地1030043 m2,位于康定市境内,距离川藏铁路新都桥站约12km,最小单块泥流阶地1102 m2,位于乃东区境内,距离川藏铁路甲村站约3.3km,沿线泥流阶地平均面积为45013 m2,沿线泥流阶地主要分布在康定市、察雅县以及桑日县境内。 川藏铁路沿线碎屑散粒体分布数据基于研究区高分二号遥感影像资料,解译了川藏铁路理塘至林芝区间段广泛发育的斜坡散粒体,斜坡散粒体将其根据流动特征和结构模式,划分为活动型和原位风化型。目前该研究区共识别出斜坡散粒体病害2308条,覆盖面积达1283.21km2,平均面积0.56km2,最小上图面积为600m2,集中分布在海拔3700m~5500m之间,平均海拔为4767.78m。研究区范围内的斜坡散粒体约95%的单块斜坡散粒体面积小于2.0×104m2,平均面积在55.5×104m2,面积最大单块斜坡散粒体面积为9148×104m2;斜坡散粒体主要分布在高程值4500-5400m之间,占总斜坡散粒体块数的87.9%,其中高程值在5000-5400m的斜坡散粒体块数占为47.7%,平均高程值为4945m,海拔最低的单块斜坡散粒体其高程值为3241m;研究区范围内的斜坡散粒体坡度值主要介于30-70°之间之间,占总斜坡散粒体块数的89.5%。该数据集制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。为冻融泥流发育规律和古气候研究提与川藏工程走廊斜坡散粒体地理分布特点提供了研究基础。
江利明, 黄荣刚, 王慧妮
本文数据包含火山岩的全岩主量元素和微量元素、锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学、锆石微量和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。通过获得的数据,结合已有文献数据资料,可以限定区域内岩浆作用的时代、成因和形成背景。
帅雪, 李世民, 朱弟成
本文数据包含火山岩的全岩主量元素和微量元素、全岩Sr–Nd-Pb同位素和锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd-Pb同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。
李世民, 王青, 朱弟成
该数据集主要内容为G317和G318国道沿线边坡及路面工程病害调查数据集,通过现场调查获得,调查时间为2020年1月9日-1月19日,2020年8月10日至2020年9月2日。调查对象为川藏北线G317(那曲-甘孜)和川藏南线G318(拉萨-新都桥)。调查的病害类型主要包括冻融诱发的边坡病害及灾害(落石、危岩体及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及冬季的涎流冰病害。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解川藏工程走廊主要公路工程冻融病害情况及相关研究提供依据。
牛富俊
本数据集主要包括对中国东部中生代以来玄武岩Li同位素分析结果,地点包括东北地区诺敏河和五大连池地区,华北昌乐、蓬莱和山旺地区,华南明溪、闽清、龙海、旗尾山、藩坑和青龙山等,Li同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得,测试精度好于0.3‰。玄武岩Li同位素的数据将对了解中国东部地幔的演化提供重要的数据支撑。数据结果显示部分中生代玄武岩由于较长的地表暴露经历了风化,还有的受到外界热液流体的影响而蚀变。新生代玄武岩的地幔源区和亏损地幔间并未存在较大的分馏,部分偏低的Li同位素组成可能是源区地幔受到沉积物来源熔体的交代。
王洋洋
本数据集对栏杆玄武岩进行了详细的地球化学分析,主要包括全岩主/微量元素、Sr-Nd-Pb同位素分析,锆石U-Pb定年、Hf同位素分析以及硅酸盐熔体包裹体主/微量元素分析。其中主量元素测试同时使用X射线荧光光谱仪(XRF)进行分析,数据误差小于5%。全岩微量元素分析使用电感耦合等离子体质谱仪(ICP-MS),分析结果误差小于5-10%。通过主、微量元素组成特征,可以有效判断栏杆玄武岩分类及成因。全岩Sr-Nd-Pb同位素采用多接收电感耦合等离子质谱仪(MC-ICP-MS)完成,测试结果包括86Sr/88Sr、146Nd/144Nd、206Pb/204Pb、207Pb/204Pb以及208Pb/204Pb比值。Sr-Nd-Pb同位素作为很好的岩浆源区示踪剂,能够示踪栏杆玄武岩源区组成。相比于全岩成分,早期结晶的矿物捕获的硅酸盐熔体包裹体能够代表最初始的熔体组成。本文通过激光剥蚀电感耦合等离子体质谱仪LA-ICPMS分析测试了单个熔体包裹体组成,分析误差小于5%。通过熔体包裹体组成可以判断形成栏杆玄武岩的初始熔体具有更难熔的特征。锆石,作为常用的定年副矿物,已经被广泛用于U-Pb定年。通过LA-ICPMS原位分析技术,有效测定栏杆玄武岩中分选的锆石颗粒,其定年结果指示栏杆玄武岩形成于侏罗纪时期。锆石原位Hf同位素能够有效示踪形成锆石的物质来源,本文锆石Hf同位素采用高分辨率Nu Plasma II MC-ICP-MS进行分析,在分析过程中, 标准锆石(91500)和蓬莱(Penglai)锆石的176Hf/177Hf比值分别为0.282301±0.000017(2σ,n = 15)和0.282915±0.000014 (2σ, n=18),与前人报道的一致。Hf同位素分析结果显示存在富集组分的加入,结合全岩元素和同位素组成进而判断栏杆碱性玄武岩可能是由于俯冲板片脱水交代上覆岩石圈地幔发生部分熔融形成的。
王晓霞
本文数据包含火山岩和花岗质岩石的全岩主量元素和微量元素、全岩Sr–Nd同位素和锆石U–Pb年龄和Hf–O同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏中部达如错地区的花岗闪长岩、二长花岗岩、正长花岗岩、安山岩、英安岩、流纹岩、砂岩和板岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石O同位素地球化学数据是通过二次离子探针获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景,进行沉积岩物源分析。
李世民, 王青, 朱弟成
经过整理的有文献资料的和卫星影像上能观察到的泥石流-堰塞湖-溃决洪水灾害链编目数据与分布图。在数据中泥石流被分为一般泥石流与冰川泥石流两种类型,发生时间从1953年到2019年不等。该数据主要通过文献资料调查结合遥感判识确定灾害链发生的位置、类型等信息,再整理成表格与生成矢量数据。数据由调查文献资料与遥感目视解译生成。由于无法判断许多灾害的确切发生时间,因此难以评价数据的完整性。灾害点编号为野外科考区域代码+河流流域名称首字母代码+灾害链类型代码+四位顺序数字编号。详见Excel数据文件。
周丽琴, 唐晨晓
本文数据为花岗岩的岩石全岩主量元素和微量元素、全岩Sr–Nd–Pb–Hf同位素和锆石U–Pb年龄和Hf–O同位素数据。样品采集自西藏北部唐古拉地区的正长花岗岩和二长花岗岩。放射性同位素年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd–Pb–Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石Hf-O同位素地球化学数据是通过激光剥蚀-多接收等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。这些新数据,结合文献数据,进一步证实唐古拉大型花岗岩基侵位于南–北羌塘地体的同碰撞过程。其富集的Sr–Nd–Pb–Hf–O同位素组成指示其主要来源于再循环浅表物质的部分熔融,并有幔源物质加入。本文的研究表明同碰撞期间也可形成大型花岗质岩浆活动。
宋绍玮, 朱弟成, 王青
横断山多尺度致灾、孕灾、承灾数据时空统一数据集包含了由高程数据衍生的一系列地貌数据、年均归一化植被指数数据、年均气温与降雨数据、VIIRS夜间灯光数据。其中地貌数据覆盖横断山地区,植被与气候相关数据覆盖青藏高原,夜间灯管指数数据覆盖全国范围。数据收集时间根据来源不同而异,最早为2000年,最晚为2018年。该数据集主要是为了进行灾害、风险评价而准备。本数据集将这些数据整理进行了重采样、空间校正、光学校正、地貌因子计算、空间统计等流程加工,数据精度与其数据源的原始精度数据一致,未经过降采样等模糊处理。处理过程中采用了科学标准流程,区分了连续与不连续型数据,将处理过程中的数据损失降到最低。
唐晨晓
本数据集主要包括南岭地区水口山和西华山花岗岩的磷灰石原位Sr-Nd同位素和锆石原位Hf-O同位素数据,漂塘钨矿床黑钨矿微量元素数据及单个流体包裹体LA-ICP-MS成分分析数据,西华山钨矿床黑钨矿石英稳定O同位素数据及单个流体包裹体LA-ICP-MS成分分析数据。利用相关数据,结合流体包裹体原位分析和精细矿物学研究,揭示了华南地区黑钨矿沉淀的过程与机制,发现了赋存在岩体内部的黑钨矿由水-岩相互作用所致,而赋存于岩体外部的黑钨矿则由岩浆流体沸腾冷却形成,并非以往人们认为两种类型黑钨矿具有相同的沉淀过程,这为深入理解脉型黑钨矿矿床提供了新认识,丰富和发展了钨成矿理论体系,拓宽了找矿思路。
阳杰华, 刘亮
本数据集主要包括东南沿海花岗岩的锆石U-Pb同位素测年、原位Hf同位素数据,岩石全岩主微量地球化学数据以及Sr-Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定了燕山早期陆缘弧典型花岗岩(福建锦城和浙江梵音洞花岗岩)的成因,并结合东南沿海燕山早期岩浆岩的现有研究数据,厘定中国东南部早-中侏罗世陆缘弧岩浆岩带,限定太平洋与特提斯构造转换具体时限,这为深入理解古太平洋板块俯冲的早期历史提供了新的认识。
刘亮
本数据集主要包括马来西亚花岗岩的锆石U-Pb同位素定年、微量元素、原位Hf同位素数据,锡石U-Pb定年数据,岩石全岩主微量地球化学数据以及磷灰石原位Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定马来西亚的多期S型花岗岩,指出这类花岗质岩浆富氟和还原性的特征对锡成矿作用极为有利,并建立岩浆与古特提斯洋的俯冲、中缅马苏地块—印支地块碰撞的具体联系。通过矿石矿物锡石的U-Pb定年和成矿花岗岩研究,直接限定了三期重要锡成矿事件,首次建立了东南亚锡成矿年代学格架,确定了锡成矿的控制因素,明确了锡成矿与特提斯的演化关系。
刘亮, 阳杰华
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件