本文数据包含不同类型火成岩标样(玄武岩BIR-1a, 辉绿岩W-2a, 纯橄岩DTS-2b、WPR-1和橄榄岩GPt-3)和低Mo含量淡色花岗岩Mo含量和同位素比值分析数据。淡色花岗岩采自西藏南部萨嘎、错那和正嘎地区;Mo同位素分析数据通过使用多收集器-电感耦合等离子体质谱(MC–ICP–MS)测定,获得的标样及淡色花岗岩数据用与验证所建立的低Mo含量样品分析方法的精度和准确度,以实现对更多的低含量样品进行高精度的Mo同位素分析。
范晶晶
本文数据集包含辉长岩和其包体的全岩主量元素和微量元素、矿物主量元素和微量元素、全岩Sr–Nd同位素、锆石U–Pb年龄数据。样品采集自西藏南部拉萨地块打加错地区的辉长岩及其中的包体。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的,矿物微量元素数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对弧岩浆的角闪石分异过程提供认识。
王军
本数据为长江下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb测年数据和原位Hf-O同位素,磷灰石原位主、微量元素地球化学数据。样品为采自枞阳的A型花岗岩,岩性为碱性长石花岗岩和石英碱性长石正长岩。全岩主量元素数据由XRF分析获得,F元素的含量由ISE分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据和微量元素数据由LA-ICP-MS分析获得,原位O同位素组成由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究旨A1和A2型花岗岩的源区成分和岩浆作用过程,制约长江下游地区的构造演化。
江小燕
数据集包括伊朗西部Boroujerd侵入杂岩的伟晶岩的全岩主量元素和微量元素含量,以及从伟晶岩中挑选的石榴石的主量元素和微量元素。含石榴石的伟晶岩是从Ghale Samurkhan、Ghapanvari、Ghare Dash和Sang-e Sefid的四处露头处收集。 许多伟晶岩的粗粒结构和矿物各向异性(分层)使得收集全岩地球化学分析的代表性样品变得困难。然而,所研究的Boroujerd伟晶岩都没有显示出内部的分带性,并且根据Hutchison (1974)的建议,收集了足够大的样品来克服粒度大造成的偏差。使用jaw破碎机将样品破碎四等分,使用玛瑙研磨机粉末化。样品制备和全岩主、微量元素测定在中国科学院广州地球化学研究所同位素地球化学国家重点实验室进行。将大约2克岩石粉末准确地放入陶瓷坩埚中,放入马弗炉中,在950℃下保持4小时,然后冷却并重新称重,以确定烧失量(LOI)。将1.200±0.002克等分的LOI粉末放入铂坩埚中,并与9.600±0.002克Li2B4O7助熔剂混合。使用V8C自动熔化机在1250℃熔化混合粉末,并浇铸成均匀的玻璃丸。 使用Rigaku ZSX100e X光荧光光谱仪(XRF)测量主要元素的丰度。仪器按照国际标准进行校准,包括USGS火成岩标准,分析精度优于1%,主要元素精度在5%以内;主要元素的检测限为约30 ppm。 微量元素的分析使用Perkin-Elmer Sciex ELAN 6000 ICP-MS。将大约50毫克样品粉末准确称量到聚四氟乙烯胶囊(Teflon capsules)中,加入HF-HNO3溶液,密封胶囊并将其置于高压不锈钢容器中。将容器放入马弗炉中,在250℃下加热24小时,然后淬火,回收聚四氟乙烯胶囊,松开盖子,在加热板上将内容物干燥。向聚四氟乙烯胶囊中加入一份新的HF-HNO3溶液,并重复溶解和干燥程序。将沉淀物溶解在含5 ppb Rh和5 ppb Re的3% HNO 3溶液中,该溶液用作内部标准,以监控分析过程中的信号漂移。中国国家岩石标准GSR-1和GSR-3以及美国地质勘探局标准AGV-1、W-2、G-2和GSP-1用于校准测量样品的元素浓度。分析精度一般优于5%。 使用国家海洋局第二海洋研究所(中国杭州)的JEOL JXA 8100电子探针微区分析仪(EPMA)和四个波长色散光谱仪收集石榴石的背散射电子图像和主要元素组成。使用的操作条件:15千伏的加速电压、20 nA的束流、5μm的束直径、峰值10秒和每个背景10秒的采集时间。美国标准物质公司和中国标准物质公司提供的天然硅酸盐和纯氧化物用于校准电子探针。使用的标准和检测晶体包括铁铝石榴石(Si和Al;TAP晶体)、金红石(Ti;PET晶体),赤铁矿(Fe;LIF晶体),透辉石(Mg;TAP晶体),磷灰石(Ca;PET晶体),钠长石(Na;TAP晶体),钾长石(K;PET晶体),红柱石(Mn;LIF晶体),铬铁矿(Cr;LIF晶体)。使用JEOL所属软件对数据进行了简化,该软件应用了ZAF型矩阵校正,石榴石的化学计量是通过标准化的12个氧原子成分分析中得出的。分析元素的计算检出限优于100 ppm。单个元素的分析误差取决于绝对丰度;对于丰度在0.5至1wt%之间的元素,相对1σ精度优于10%,对于丰度在1至10wt%之间的元素,相对1σ精度优于5%,对于丰度大于10wt%的元素,相对1σ精度优于1%。 中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室利用LA-ICP-MS测定了石榴石的微量元素组成。LA-ICP-MS仪器由Agilent 7900 ICP-MS与ReSouncials RESOlution 193nm激光器、S-155双体积样品池(旨在避免交叉污染并减少背景冲洗时间)、Squid平滑装置(用于改善激光消融脉冲诱导的消融材料的混合和均质流速)和计算机控制的高精度X-Y平台 组成。烧蚀后的样品气溶胶与氩+氮气混合,以提高分析灵敏度,并在氦载气中传输至等离子体炬。激光器在80 mJ的动态能量下工作,衰减器值为25%,激光频率为8 Hz,光斑直径为74 μm。每次分析包括25秒的背景采集(气体空白),随后从样品中采集40秒的样品数据采集。ICP-MS对微量元素的检出限大多优于10 ppb,不确定度为5-10%。每个分析批次包括在开始和结束时对NIST612标准的两次剥蚀,和其间的五个矿物样品剥蚀。NIST612标准玻璃用作外部校准标准,而NIST610则作为监测标准进行分析,以评估仪器的精度和准确度。由电子探针测定的石榴石SiO2含量是从紧邻每个激光烧蚀坑的点收集的,用作计算元素丰度的内标。背景和分析信号的离线分析和整合,以及时间漂移校正和定量校准使用ICPMSDataCal软件。 该数据集可以用于解密伟晶岩岩浆起源。伟晶岩的矿物学和地球化学特征表明,伟晶岩为过铝至偏铝质的I型花岗岩。根据矿物组合和全岩地球化学,伟晶岩被划分为白云母型伟晶岩。电子探针分析显示,石榴石具有同心的成分分带,并且是铁-锰-铝石榴石固溶体,具有较少的镁铝榴石、钙铝榴石和钙铁榴石成分。石榴石中主要元素的同心分带归因于熔体中岩浆的生长。在MnO + CaO/ FeO + MgO (wt%)图中,石榴石的成分与熔体从弱到中度结晶一致。Boroujerd伟晶岩中的石榴石的特征是从中心到边缘,钇、铪、钛、锆、铌、钽、铪和铀的含量逐渐降低。石榴石还具有高的球粒陨石标准化的重稀土含量,具有几乎平坦的模式(Ybn/Smn = 0–508),较低的轻稀土元素含量,以及负铕异常(Eu/Eu* < 0.3)。这些元素从核心到边缘的变化归因于岩浆分馏的增加。Boroujerd伟晶岩石榴石中的成分、主量和微量元素分带模式与岩浆起源和不同分馏I型岩浆结晶相一致,表明石榴石晶体化学是解密伟晶岩岩浆起源的重要工具。
丁兴
本文数据集包含闪长岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd同位素、锆石U–Pb年龄和Hf同位素数据。样品采集自西藏北部可可西里地块五道梁地区的闪长岩。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。锆石Hf同位素数据是通过激光剥蚀-多接受电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对大陆地壳高镁安山质特征的起源提供认识。
王军
该数据集包含了2019年1月1日至2019年12月31日的青海湖流域自动气象站观测数据。共有两个站点,其中鸟岛站位于青海省海南州共和县,观测点经纬度36°58′N,99°52′E;瓦颜山站位于青海省海北州刚察县伊克乌兰乡观测点经纬度37°44′ N,100°05′ E。观测要素包括3层(1m、5m、10m)空气温度(℃)和相对湿度(%),大气压强(hpa)和光合有效辐射(W/m2)。数据基于CR1000 数据采集器收集,使用hmp155a测量空气温度与湿度,使用CS106测量大气压强, 使用LI200R测量光合辐射,每半小时进行一次数据记录。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
本数据为铜陵地区铜官山铜-金多金属矿床埃达克岩以及其中包体的全岩主微量元素和Sr-Nd同位素地球化学数据,以及锆石原位Hf-O同位素、U-Pb测年数据和磷灰石原位主、微量元素地球化学数据。样品为埃达克质侵入岩和包体,围岩的岩性为花岗闪长岩、石英二长闪长岩,包体的岩性为石英二长闪长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊 (Ore Geology Reviews),数据真实可靠。通过获得的数据,可以研究埃达克质岩及与其伴生的铜金矿床的成因。
江小燕
数据内容包括池州铜钼矿床辉钼矿的Re-Os同位素年龄. 试验地点位于中国地质科学院北京地质分析中心稀土Re-Os实验室,试验设备通过TJAX系列ICP-MS测定了辉钼矿的稀土Re-Os同位素组成。 Re-Os同位素年龄实验特性:每个年龄测定的不确定度约为1.5%,包括187Re衰变常数的不确定度、同位素比值测量的不确定度和尖峰标定。衰变常数为λ (187Re)=1.666×10-11 year−1。根据以上规则形成最终年代学数据。 以上数据已发表于SC期刊,数据真实可靠。上传数据为Excel表格格式。
谢建成
主微量元素数据在中国科学院广州地球化学研究所同位素地球化学国家重点实验室由ICP-MS完成测定。锆石U-Pb年龄和锆石微量均在中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室由LA-ICP-MS完成测定。同批次测定的国际标样和参考值在误差范围内一致,全流程空白低,数据质量准确可靠。管店岩体由石英二长岩构成,准铝质,属于高钾钙碱性系列。样品具有高SiO2 (59.15 - 62.32%),Al2O3 (14.51 - 15.39%),Sr (892 - 1184 ppm)含量,Sr/Y (56.74 - 86.32)比值,以及低Y (12.65 - 18.05 ppm)含量,这些地球化学特征类似于典型的埃达克质岩。管店岩体具有较高的K2O (2.88 - 3.86%)含量,MgO (3.89 - 5.24%)含量和Mg# (55 - 60)值,亏损高场强元素(Nb,Ta和Ti),以及Ba,Pb和 Sr正异常。LA-ICP-MS锆石U-Pb定年结果显示,锆石的加权平均年龄为129.2 ± 0.7 Ma。基于原位锆石微量元素分析,计算得出锆石Ce4+/Ce3+ = (6.97 - 145),(Eu/Eu*)N = (0.23 - 0.42)。相比于长江中下游和德兴铜矿含矿的埃达克质岩,管店岩体具有较低的氧逸度,这与该区域不含矿的事实一致。结合前人研究,我们提出:管店埃达克质岩岩体是由发生在早白垩世太平洋板块和伊泽奈崎板块的洋脊俯冲所诱发的拆沉下地壳的部分熔融所形成。在洋脊俯冲过程中,物理碰撞导致了加厚下地壳的拆沉,而热化学侵蚀引发了拆沉下地壳的部分熔融。
罗泽彬
本文数据集包含火山岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd-Hf同位素、锆石U–Pb年龄和O同位素数据。样品采集自西藏中部羌塘雁石坪地区的玄武岩和流纹岩。锆石U-Pb年代学数据和氧同位素数据是通过二次离子探针质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针获得的。岩石全岩Sr–Nd-Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制。
王军
青藏高原城镇化地区水质调查数据主要包括湟水流域以及其他青藏高原重点城镇化地区的水质调查数据。数据主要是在2020年7-8月期间,利用哈希DR900水质测量仪对湟水流域各河段以及流经青藏高原主要城镇河流的上下游河段水质进行实地测量获取。主要参数指标包括:总氮、总磷、氨氮、化学需氧量、溶解氧含量、pH值、硬度、浊度和色度。其中,化学指标(总氮、总磷、氨氮、化学需氧量)于科考结束后在实验室统一测定,使得水样采集与水质测定的时间相距过久,氨氮含量已失准,因此部分水样的氨氮未进行测量。此外,由于测试费预算限制,仅测定了高原城镇出水口单个采样点的化学指标,其余水样仅现场测定了物理指标。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究和相关生态水文模型验证提供支持。
何春阳, 刘志锋, 夏沛
数据内容包括池州地区花岗闪长岩(斑岩)的Nd、Sr同位素组成及其LA-MC-ICP-MS锆石Hf同位素组成。 Rb-Sr和Sm-Nd同位素数据测算地点位于中国科学技术大学放射成因同位素地球化学实验室,使用仪器为Finnigan-MAT-262热电离质谱仪。 锆石的Lu-Hf同位素组成测算地点位于南京大学矿床研究国家重点实验室,利用海王星多采集器ICP-MS(LA-MC-ICP-MS)上的193nm激光进行测算。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据通过Excel表格上传。
谢建成
在池州地区,对样品花岗闪长岩(斑岩)全岩进行分析,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 全岩主微量元素试验地点是位于中国科学院广州ALS实验室组,主量元素采取X射线荧光法测算,微量元素及稀土元素采用ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
地震观测数据可用于构建地壳和上地幔地震波速结构、约束壳幔变形特征。伊朗高原东南缘是大陆碰撞和大洋俯冲的过渡地区,对该地区的研究可以为认识汇聚板缘作用及其板内构造响应的联系提供重要依据。数据来源于本课题组布设的流动地震台阵,选址要求严格,所有台站均配备Trillium 120PA地震计(120 s-175 Hz)及Taurus数字采集器。本数据集为P波初至前100 s至后200 s的波形数据,事件震级大于等于5.0级,震中距范围为30°- 90°。数据可用于认识俯冲-碰撞转换带的深部动力学过程。
陈凌
数据集为青藏高原吉隆-尼玛跨喜马拉雅造山带GPS活动变形重复测量原始数据。该数据为2018年和2019年两次的测量结果,包括13个台站数据,数据质量良好。通过这些测点的观测数据,结合项目研究团队已经在喜马拉雅造山带沿亚东-谷露布设的连续GPS观测剖面数据可以揭示印度大陆向北汇聚的应变在喜马拉雅造山带关键部位的水平、垂直分布特征;认识喜马拉雅造山带现今隆升状态,与水平运动的关联;结合活动断层运动位错理论,研究震间应变在主边界断裂(MBT)、主中央断裂(MCT)等的定量分配,震间的应变累积特征、断层闭锁范围、断层闭锁程度,为评价研究区活动断层地震危险性提供重要约束;结合2015年尼泊尔地震破裂模型,从运动学到动力学视角研究青藏高原南缘岩石圈流变学特征。
何建坤
在池州地区,对样品花岗闪长岩(斑岩)中的副矿物磷灰石进行提取筛选,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 主量元素试验地点位于合肥工业大学资源与环境工程学院,实验仪器为JEOL-JXA-8230M电子探针。微量元素试验地点是位于中国科学院广州地球化学研究所同位素地球化学国家重点实验室,采用LA-ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
本数据为长江中下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb-O同位素及测年数据和磷灰石原位主、微量元素地球化学数据。样品为采自青阳-九华山地区的I型和A型花岗岩,岩性包括花岗斑岩、花岗闪长岩、碱性花岗岩和二长花岗岩,以及其中的暗色包体。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究庆阳-九华山杂岩体的成因和演化过程,约束岩浆形成过程的物理化学条件,制约其形成的构造环境。
江小燕
数据集包括利国铁-铜-金矿床利国侵入体的全岩主微量元素、Sr-Nd同位素组成、磷灰石的主微量元素以及磷灰石的Sr-O同位素组成。全岩主微量元素在澳实分析检测(广州)有限公司分析,经过偏硼酸锂熔融,使用X射线荧光(XRF)光谱仪分析主量元素,分析准确度和精确度在1%以内,微量元素用ICP-MS分析,分析准确度和精确度在5%以内。Sr-Nd同位素组成在中国科学院广州地球化学研究所用MC-ICP MS分析,测量的143Nd/144Nd和87Sr/86Sr比分别标准化标与标准样品的标准值非常一致。采用标准的破碎、筛分、重液分离和磁分离技术从全岩石样品中收集磷灰石,然后安装在一个环氧树脂盘中,并抛光到近一半的部分,以暴露内部结构。磷灰石主量元素在国家海洋局第而海洋研究所使用电子探针分析。微量元素在中国科学院广州地球化学研究所矿物学与成矿学重点实验室通过原位LA ICP-MS进行分析。仪器工作条件为,消融时间40s,激光斑点直径为43μm,重复频率为6Hz。使用NIST610作为主要的外部校准标准,使用43Ca(由定量电子微探针法确定)作为内部标准。漂移校正、离线选择、集成背景和分析信号,以及微量元素的定量校准都使用ICP-MS DataCal软件进行校准。磷灰石原位Sr同位素分析在西北大学地质系大陆动力学国家重点实验室,仪器工作条件为,消融时间为50s,激光斑点直径为60μm,重复频率为6Hz。根据Sr987和Alfa Sr标准校准磷灰石的同位素成分。测量的磷灰石标准Sr987的87Sr/86Sr比值和AlfASr的分别为0.71025±21(n=29,2σ)和0.70727±32(n=30,2σ)。在北京SHRIMP中心测量了磷灰石原位氧同位素分析。SHRIMP IIe/MC配备了可拆卸的Cs主离子源、电子枪、多集电器和亥姆霍兹线圈,以获得高精度的O同位素测量。每18O/16O分析取约7min,斑点直径为23μm。用Durango磷灰石的同位素成分进行了校准。Durango磷灰岩实测δ18O平均值为9.81±0.66‰(2σ),与以往误差范围内的研究结果相似。因此以上数据均具有可靠性。 该数据集包括含矿岩体以及其磷灰岩地球化学和同位素特征,可以帮助我们了解它的岩石成因和矿化的控制因素。来自I组和II组的磷灰岩都是岩浆成因的含氟磷灰岩,其特征为负Eu异常、富集LREE、亏损HREE。同时,两组均具有较高的Sr/Y和δEu,表明了源岩的斑岩埃达克岩特征。与整个岩石的同位素相比,两组磷灰岩的变量87Sr/86Sr(0.70250-0.71262)和δ18O(6.22-9.00)值表明了地幔、地壳和/或沉积物衍生物的贡献。虽然I组磷灰石和II组磷灰岩具有相似的地球化学特征,但I组磷灰石先于斜长石结晶,无Sr-(La/Yb)N/(La/Sm)N/(Sm/Yb)N相关性,而II组磷灰石与斜长石结晶一致,呈正相关。这些对氧化还原环境敏感的元素(δEu、δCe、MnO、V)的地球化学表明,显示出高氧逸度(在HM和NNO之间),I组磷灰石系统的氧逸度高于II组磷灰石。更重要的是,第一组磷灰石和第二组磷灰石之间不同的微量元素和氧逸度特性可以作为矿化指标,首次绘制出铁-铜-金矿化范围。此外,母岩浆中估计的F和Cl含量(F=1300-2446ppm,Cl=140-4780ppm)高于原始地幔和平均大陆地壳中的含量,表明来F和Cl的富集过程。根据上述埃达克岩特征、高氧逸度、高氟氯含量,推测太平洋板块俯冲可能是利国成岩和矿化的主要动力机制。
丁兴
表格内容包括池州地区花岗闪长岩(斑岩)的锆石年代学及微量元素地球化学数据分析结果等信息。实验方法是LA-ICP-MS。利用合肥工业大学资源与环境工程学院的agilent7500a-ICP-MS仪器和compexpro102193nm波长ArF准分子激光源,对锆石的U-Pb同位素组成进行了分析。分析使用了80mj的激光能量和6hz的重复频率,频率为32μm光斑大小和50秒消融时间。锆石同位素比值用icpmsdatacalv计算。此数据可为池州地区花岗闪长岩(斑岩)日后地球化学模型分析提供数据支持。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本表格内容主要对池州地区花岗闪长岩(斑岩)样品特征进行描述,表格元素包括岩体名称、采样位置、岩石类型、结构、主要矿物、相关矿床年龄研究方法、岩石年龄数据等相关数据。通过对前人学者的研究总结,对于相关岩石年代研究方法包括LA-ICP-MS、SIMS、SHRIMP等,池州地区花岗闪长岩(斑岩)样品年龄主要处于139.6±2.1至149.4±1.2之间。岩石的主要矿物组成为20-30%石英,20-25%钾长石,35-40%斜长石,10%黑云母,5%角闪石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件