本数据集在文献资料和卫星影像识别的基础上,对川藏铁路、川藏交通廊道、金沙江上游区域进行了较为详细的实地野外科学考察,将观察到的泥石流灾害链、滑坡灾害链、断裂构造典型点、冰川泥石流灾害链、大规模崩塌灾害链等进行编目和详细拍照记录;填写野外科考灾害点调查数据表格,整理并填写科考日志文件,完成各种类型灾害点的分布图。照片清晰、灾害调查表内容详实、科考日志填写完整。该野外调查照片与数据,对今后灾害链的野外调查及其未来发展趋势的对比研究具有重要参考意义。
邓宏艳, 王姣, 王玉峰
佛子冲矿区具有同生沉积喷流型和后生矽卡岩型成因之争。由于佛子冲矿床矿体赋存伴随着绿色层状岩石(GSR) ,GSR 成因可能对解决这一争议起到重要作用。这促使我们去进行一系列岩石学调查、全岩矿物化学分析和侵入岩的锆石 U-Pb 年代学研究。GSR中与矿体相关的元素,如Cu、Pb,具有从边缘到核心递减的规律,暗示这为一热液流体起源,通过多种证据分析证明,佛子冲矿床是云开地区层控矽卡岩型铅锌矿化体系的典型代表
虞鹏鹏, 郑义
本数据为滇东南地区锡锌铟多金属矿床的磁铁矿的主量、微量地球化学数据。样品包括交代型磁铁矿和充填型磁铁矿两类,前者多呈囊状,条带状,与矽卡岩矿物共生;后者为脉状,与金属硫化物共生。样品的测试在国家地质实验分析中心完成,样品的主量、微量元素数据分别由ICP-AES和ICP-MS分析测试获得。以上数据已发表于核心期刊《岩石学报》,数据真实可靠。通过获得的数据可以探讨磁铁矿的成因,并从物质来源和成矿流体性质方面进一步约束成矿作用过程。
牛浩斌
广东河台金矿糜棱岩锆石U-Pb定年数据委托中国科学院广州地球化学研究所矿物学与成矿学中科院重点实验室检测。将选好锆石制靶用于LA-ICP-MS的实验数据采集,采用氦气作为载气, 激光束斑直径为35 μm, 脉冲频率10 Hz, 80%的激光能量, 每个点的分析时间为60 s, 包括20 s的背景测试和40 s的样品信号。测试的元素包括34S、57Fe、59Co、60Ni、65Cu、66Zn、75As、82Se、96Mo、107Ag、115In、118Sn、121Sb、208Pb、209Bi等。
焦骞骞
数据包含两部分,分别为大云山—幕阜山岩体的磁化率各项异性(AMS)数据,及岩体南缘的花岗质糜棱岩和围岩云母片岩中的黑云母、角闪石和白云母的40Ar-39Ar的年龄。在野外使用便携式汽油钻机采集岩芯柱,然后在室内将样品切割成标准的直径2.5 cm,高2.2 cm的柱体。最终的测试在中国科学院地质与地球物理研究所的古地磁实验室完成。矿物的40Ar-39Ar的年龄的测试过程主要包含以下步骤。先对岩石样品进行清洗和粉碎,然后在双筒显微镜下手工挑选黑云母颗粒。在为定年做准备之前,重新检查了黑云母,选择了新鲜、透明、没有夹杂物的晶体。实验主要在中国科学院地质与地球物理研究所地质与地球物理重点实验室在40Ar/39Ar和U-Th/He实验室完成。使用MM5400质谱仪高分辨率进行40Ar/39Ar的测量。然后利用excel的软件的插件ArArCALC对测试的原始数据进行进一步的处理。该数据为大云山-幕阜山岩体侵位过程及动力学机制的解释提供年代学的支持。 以上数据已发表在Journal of Geophysical Research: Solid Earth,数据真实可靠
冀文斌
2017年,Sr-Nd同位素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室MC-ICP-MS仪器上完成,利用阳离子树脂交换柱对Sr和Nd元素进行提取,盐酸作为淋洗液。实验过程具体描述见文献韦刚健 等, (2002)和Li 等, (2004)。87Sr/86Sr和143Nd/144Nd测试的比值分别通过86Sr/88Sr=0.119 4和146Nd/144Nd=0.721 9校正质量分流, 而87Sr/86Sr和143Nd/144Nd的报道比值则是分别通过NBS SRM 987标准87Sr/86Sr=0.710 25和Shin Etsu JNdi-1标准143Nd/144Nd =0.512 115进行校正(Yuan 等, 2010)。
邓腾
本数据为安徽中部东顾山黑云母花岗岩的全岩主、微量元素、Pb同位素地球化学数据,以及锆石原位Hf同位素数据,白钨矿主微量、Sr同位素数据,黄铁矿S同位素数据。样品采自安徽中部东顾山黑云母花岗岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Pb同位素组成数据由ICP-MS分析获得。锆石U-Pb定年及原位Lu-Hf同位素组成数据由LA-MC-ICP-MS分析获得。白钨矿主量元素由JXA8230型电子探针分析获得,微量元素由LA-ICP-MS分析获得,白钨矿原位Sr同位素由MC-ICP-MS分析获得。黄铁矿S同位素由MC-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究东顾山钨矿成矿流体的来源、演化和成矿过程。
杨晓勇
2017年,锆石分选在河北省诚信服务有限公司完成,将采集的样品(5 kg ±)清洗干净、破碎采用常规方法将样品粉碎至80目以上,并采用电磁选方法进行分选。在双目镜下挑选出晶形和透明度较好,无裂纹,粒径足够大的锆石颗粒作为测试对象。锆石制靶和阴极发光(CL)图像在重庆宇劲科技有限公司完成,将其置于DEVCON环氧树脂中,待固结后抛磨至锆石粒径的大约二分之一,使锆石内部充分暴露。锆石年龄测试在中国科学院广州地球化学研究所矿物学与成矿学重点实验室完成,使用仪器为LA-ICP-MS,仪器型号为Resolution M50 Agilent 7500a,厂家为Resonetics Agilent,光斑为29μm。采用He气作为剥蚀物质的载体。采用标准锆石 Plesovice(337.13±0.37 Ma,Sláma 等, 2008)和 Temora(416.6±1.0 Ma,Black 等, 2003)作为外标,元素含量采用NIST SRM610作为外标,29Si作为内标元素(锆石中SiO2含量为32.8%),详细分析方法见Yuan 等 (2004);普通铅校正采用Andersen (2002)推荐的方法;锆石的同位素比值及微量稀土元素含量计算采用ICPMSDATECAL程序(Liu 等, 2010a; Liu 等, 2010b),年龄计算及谐和图的绘制采用Isoplot 2006(Ludwig, 2004)。
邓腾
连云山岩体的主微量测试分析于2019年在核工业北京地质研究院完成。主量元素的测定采用X射线荧光光谱法(XRF),其过程大致如下:首先称取0.7g样品,然后加入适量硼酸高温熔融成玻璃片,最后在XRF(仪器型号为Philips PW2404型X荧光光谱仪)上氧化物含量。测定时经GSR-1(花岗岩)标样监控,使主量元素分析精度优于5%。微量元素测定采用等离子质谱(ICPMS)法:首先称取50mg样品,用氢氟酸、硝酸敞开容器分解法与氢氟酸、硝酸密闭容器消解法相结合的方式对样品进行分解,并制成溶液,然后在ICP-MS上用内标法进行测定,分析精度优于10%。
邓腾
2019年,葛藤岭岩体的主微量测试分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,分析采用X射线荧光光谱法(XRF),仪器型号为Rigaku ZSX100e,主量元素分析精度优于5%,具体过程见李献华 和 刘颖, (2002)。微量元素分析采用等离子质谱(ICPMS)法,型号为Perkin-Elmer Sciex ELAN DRC-e,分析精度优于 5%,具体分析方法和过程可见刘颖 和 刘海臣(1996)和梁细荣 等,(2000).
邓腾
锆石原位Lu-Hf同位素分析在中国科学院广州地球化学研究所同位素国家重点实验室完成,仪器为Neptune Plus MC-ICP-MS和RESOlution M-50 激光剥蚀系统。激光参数斑束45 μm,重复率8 Hz,能量80 mJ。He作为载气并加入少量氮气以提高样品信号。Penglai锆石作为标样用于测试中,其176Hf/177Hf为0.2828906 ± 10 (2σ, Li 等, 2010b)。分析点与U-Pb定年分析点为同一位置或者同一颗锆石的附近位置。具体分析方法见Wu 等, (2006a)。
邓腾
数据为华南雪峰山中苗儿山穹隆的黑云母的40Ar-39Ar的年龄。在野外采集云母片岩,然后对岩石样品进行清洗和粉碎,然后在双筒显微镜下手工挑选黑云母颗粒。实验主要在中国科学院地质与地球物理研究所地质与地球物理重点实验室中的40Ar/39Ar和U-Th/He实验室完成。先对使用MM5400质谱仪高分辨率进行40Ar/39Ar的测量,然后利用excel的软件的插件ArArCALC对测试的原始数据进行进一步的处理。该数据为雪峰山三叠纪高原的垮塌过程及其动力学机制的解释提供年代学的支持。 以上数据已发表在Tectonophysics,数据真实可靠。
褚杨
2019年,锆石分选在河北省诚信服务有限公司完成,将采集的样品(5 kg ±)清洗干净、破碎采用常规方法将样品粉碎至80目以上,并采用电磁选方法进行分选。在双目镜下挑选出晶形和透明度较好,无裂纹,粒径足够大的锆石颗粒作为测试对象。锆石制靶和阴极发光(CL)图像在重庆宇劲科技有限公司完成,将其置于DEVCON环氧树脂中,待固结后抛磨至锆石粒径的大约二分之一,使锆石内部充分暴露。锆石年龄测试在中国科学院广州地球化学研究所矿物学与成矿学重点实验室完成,使用仪器为LA-ICP-MS,仪器型号为Resolution M50 Agilent 7500a,厂家为Resonetics Agilent,光斑为29μm。采用He气作为剥蚀物质的载体。采用标准锆石 Plesovice(337.13±0.37 Ma,Sláma 等, 2008)和 Temora(416.6±1.0 Ma,Black 等, 2003)作为外标,元素含量采用NIST SRM610作为外标,29Si作为内标元素(锆石中SiO2含量为32.8%),详细分析方法见Yuan 等 (2004);普通铅校正采用Andersen (2002)推荐的方法;锆石的同位素比值及微量稀土元素含量计算采用ICPMSDATECAL程序(Liu 等, 2010a; Liu 等, 2010b),年龄计算及谐和图的绘制采用Isoplot 2006(Ludwig, 2004)。
邓腾
2017年,将硫化物单矿物与氧化亚铜在真空状态下加热,进行氧化反应,生成二氧化硫,再用德国产Finnigan MAT-251气体同位素质谱仪分析硫同位素组成,其34S测定值的精确度好,相对误差为±0.2‰,相对标准为V-CDT。 将样品在溶解之前用Milli-Q水超声清洗。烘干以后称取约50 mg左右的样品,完全溶解在1:1的HNO3+HCl的混合酸中。然后蒸干样品,加入三次0.2 mL的2N HBr,分别蒸干。之后再次溶解在HRb+HNO3的混合酸中,两次通过50 μL的AG1X8(200~400目)阴离子交换树脂来分离纯化铅。然后将样品连同硅胶和磷酸一起点在Re单带上(Gerstenberger and Haase, 1997)。测试所用仪器为Isoprobe-T表面热电离质谱仪,分析精度为206Pb/204Pb为0.2%,207Pb/204Pb 为0.2%,208Pb/204Pb为0.5%。测试结果通过NBS981标样来校正分馏,标样的标准值据为206Pb/204Pb=16.937±0.002 (2σ),207Pb/204Pb=15.457±0.002 (2σ)和208Pb/204Pb=36.611±0.004 (2σ)(Todt 等, 1996)。 石英的氧同位素分析采用传统的BrF5分析方法(Clayton and Mayeda, 1963),用 BrF5与含氧矿物在真空和高温条件下反应提取矿物氧,在700℃与石墨棒反应转化成CO2气体,分析精度为±0.2‰,相对标准为V-SMOW。石英流体包裹体中 H 同位素分析采用Zn分解法。选取40 – 60目的纯净石英样品,在150℃低温下真空去气4小时以上,以彻底除去表面吸附水和次生包裹体水,然后在400℃高温下爆裂取水,并与金属锌反应生成H2,分析精度为±0.2‰,相对标准为V-SMOW。
邓腾
2017年,在详细的岩相学和成矿期次划分的基础上,选取了20个薄片,在镜下先将需要测试的矿物圈定出来,并拍摄显微照片用于在实验时找到对应矿物点的位置。然后对抛光的薄片进行喷碳,并随后进行电子探针(EMPA)测试,本文的电磁探针测试分两次进行,共测试了207个点。两次电子探针(EPMA)分析在用两种不同仪器进行,分别为中国科学院广州地球化学研究所同位素地球化学国家重点实验室JEOL JXA-8100电子探针和中国科学院广州地球化学研究所矿物与成矿中科院重点实验室JEOL JXA-8230电子探针。JEOL JXA-8100的分析条件为:15kV加速电压,直径为5 μm电子束斑。JEOL JXA-8120的分析条件为:20kV加速电压,20 nA电流,束斑直径为1 μm。电子探针分析的主量元素包括As,Fe,Pb,Zn,Cu,Sb和S,微量元素包括Au,Ag,Se,Co,Bi,Ni,Cu,Sb,Zn,Pt,Pd和Te。JEOL JXA-8100和JEOL JXA-8230型电子探针对于金的检测限分别为409 ppm和259 ppm。
邓腾
数据为华南越城岭穹隆中花岗质糜棱岩和片麻状花岗岩中黑云母的40Ar-39Ar的年龄。先对岩石样品进行清洗和粉碎,然后在双筒显微镜下手工挑选黑云母颗粒。在为定年做准备之前,重新检查了黑云母,选择了新鲜、透明、没有夹杂物的晶体。实验主要在中国科学院地质与地球物理研究所地质与地球物理重点实验室在40Ar/39Ar和U-Th/He实验室完成。使用MM5400质谱仪高分辨率进行40Ar/39Ar的测量。然后利用excel的软件的插件ArArCALC对测试的原始数据进行进一步的处理。该数据为越城岭穹隆的形成过程及动力学机制的解释提供年代学的支持。 以上数据已发表在Tectonics,数据真实可靠。数据以Excel表格形式存储。
褚杨
白云母的挑选于2017年在河北省诚信服务有限公司完成,采用常规方法将样品粉碎至20目以上,并在双目镜下从每个样品中挑选出200 mg左右的白云母,白云母的纯度大于99%。挑选出来的样品首先送往中国原子能科学研究院49-2反应堆B4孔道进行中子照射,用纯铝铂纸将白云母样品包成6 mm大小的球形,封闭于石英玻璃瓶中,并用0.5 mm厚的Cd皮包裹,照射时长为30小时,快中子通量为2.2576×1018。同时对纯物质CaF2和K2SO4进行同步照射,得出校正因子为:(36Ar/37Ar)Ca=0.000271,(39Ar/37Ar)Ca=0.000652,(40Ar/39Ar)k=0.00703。照射后的样品经冷却,装入样品架中经密封去气后,装入系统。 样品DY02被送往北京大学造山带与地壳演化教育部重点实验室进行Ar-Ar定年测试,测试采用的仪器为RGA10型质谱仪,详细的测试过程见Hall and Farrell (1995)。质谱仪记录5组Ar同位素信号,信号强度单位为Mv,每个三次测试就测一次空白样,数据处理的详细方法见Nomade 等 (2005)。样品14JM14和14JM15则被送往中国地质大学(武汉)进行Ar-Ar定年测试,试采用的仪器为Argus VI型质谱仪,详细的测试过程见Qiu 等 (2015),数据处理的详细方法见Koppers (2002)
邓腾
本数据集为华南雪峰山构造带的构造数据,包括地层产状,变质岩的面理和线理,褶皱轴方向。数据来源于华南雪峰山构造带野外实测,利用地质罗盘对雪峰山构造带内各个构造单元的岩石的变形数据进行详细的测量,并在室内利用excel完成应变参数的计算,并最终完成每个测点应变椭球体的求解。此数据可为华南雪峰山构造带内的应变的不均一性和造山带弧形构造的形成提供构造地质的支持。以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
褚杨
数据为Jpg格式。通过实验数据锆石年代学及微量元素分析数据,全岩地球化学分析数据得出。 锆石年代学数据分析在合肥工业大学资源与环境工程学院质谱实验室通过LA-ICP-MS进行。 全岩地球化学分析在合肥工业大学资源与环境工程学院电子探针实验室完成,使用仪器为日本电子公司的JEOL-JXA-8230电子探针分析仪。 Jpg数据结果包括:大别造山带地质图,大别构造地质简图,混合岩样品静下照片片麻岩和暗色包体中锆石阴极发光图,锆石谐和图,长石成分分类图,钙质角闪石成分图解,黑云母分类图解,黑云母镁铁图解。 本数据可以对北大别混合岩成因分析提供证据支撑。
闫骏
本文数据集包含青藏高原南北缘新近纪岩浆岩的电气石原位硼同位素数据和主量元素数据。电气石主量元素数据是通过电子探针分析获得的,电气石原位硼同位素数据是通过激光剥蚀-多接收电感耦合等离子体质谱仪分析获得的。电气石来自松潘甘孜地块湖东梁上新世的两个云母-流纹岩和喜马拉雅地块错那洞中新世的两个云母花岗岩,他们的δ11B值分别为-10.47±0.54‰。和-12.48±1.04‰。我们认为这些来自西藏南北缘的强过铝质岩浆岩主要是由于俯冲或上覆大陆沉积岩部分熔融而形成的。
苟国宁
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件