黄泥坑金矿为近年在钦杭成矿带南段广宁- 罗定断裂带内新发现的金矿, 基础研究几近空白。本次研究主要对黄泥坑金矿矿石和围岩进行薄片和光片制定,并利用电子显微镜就其进行了系统的显微岩相-矿相学观察,并结合 SEM 对部分样品进行观测的同时结合X射线能谱扫描(EDS)银金矿及黄铁矿主量元素成分,通过上述所获数据综合分析其矿物生成序列,为限定其矿床成因提供证据。本研究根据矿物相互穿插交代关系和化学成分差异识别出了 4 个主要成矿阶段,并推测黄泥坑金矿矿床地质及矿物生成序列与造山型金矿一致, 初步认为黄泥坑金矿为钦杭结合带南段的一个典型的造山型金矿。
吴晨光, 郑义
2019年8-9月第二次青藏科考共计采集色林错、纳木错及周边共计24个湖泊的水质样品,分析了叶绿素(CHL,单位为微克每升)、总氮(TN,单位为毫克每升)、总磷(TP,单位为毫克每升)、溶解性总氮(DTN,单位为毫克每升)、溶解性总磷(DTP,单位为毫克每升)、硝态氮(NO3-N,单位为毫克每升)、亚硝态氮(NO2-N,单位为毫克每升)、铵态氮(NH4-N,单位为毫克每升)及磷酸盐(PO4-P,单位为微克每升)、总悬浮颗粒物(TSS,单位为毫克每升)、有机悬浮颗粒物(OSS,单位为毫克每升)、无机悬浮颗粒物(ISS,单位为毫克每升)。同时提供样点所在湖泊名称,湖泊简写及点位所在经纬度数据,数据格式为xlsx。数据均为实验室手工分析,并经科研人员反复核验,真实可靠。
周永强
海南岛罗葵洞钼矿床赋矿围岩代表性样品的Sr-Nd-Pb同位素测试委托中国科学院广州地球化学研究所同位素地球化学国家重点实验室进行,测试仪器采用VG-354型多接收等离子质谱(MC-ICP-MS)进行完成。Sr-Nd同位素分析测试时,样品粉末首先在聚四氟乙烯杯中用HF+HNO3进行溶解,然后采用阳离子树脂交换柱将Sr和REE分离,再从REE中提取Nd。测试过程中用于校正Sr、Nd质量分馏的标准化常数86Sr/88Sr和146Nd/144Nd比值分别为86Sr/88Sr=0.119 4和146Nd/144Nd=0.721 9,作为标样NIST NBS 987和Shin Etsu JNdi-1的同位素比值分别为87Sr/86Sr=0.710 246±17(2σ,n=12)和143Nd/144Nd=0.512 105±10(2σ,n=12)。Sr、Nd同位素分析精度高于0.002%。以HBr为稀释剂,采用传统的离子交换技术对Pb进行分离和纯化,以标准样JB-3、BCR-2和JG-1a的同位素比值206Pb/204Pb分别为18.286±0、18.763±1和18.655±2(2σ,n=4),207Pb/204Pb分别为15.537±1、15.615±1和15.608±2(2σ,n=4),208Pb/204Pb分别为38.242±2、38.712±4和38.677±6(2σ,n=4)校正批样Pb同位素分析测定过程中的分馏。样品87Rb/86Sr、147Sm/144Nd比值依据样品的Rb、Sr、Sm、Nd含量以及实测的87Sr/86Sr和143Nd/144Nd比值来进行计算。初始87Sr/86Sr(ISr)在计算时使用Rb的衰变常数为λRb=1.42×10−11 a−1。初始(143Nd/144Nd)i、εNd(t)在计算时使用Sm的衰变常数为λSm=6.54×10−12 a−1和球粒陨石的143Nd/144Nd=0.512 638和147Sm/144Nd=0.196 7进行计算。Nd的单阶段亏损地幔模式年龄(TDM1(Nd))使用亏损地幔的143Nd/144Nd=0.513 15以及147Sm/144Nd=0.213 7进行计算;两阶段亏损地幔模式年龄(TDM2(Nd))计算公式依据Depaolo and Wasserburg(1979)报道。样品238U/204Pb、235U/204Pb、232Th/204Pb比值根据样品U、Th、Pb含量以及实测的208Pb/204Pb、207Pb/204Pb、206Pb/204Pb值进行计算,Pb同位素的初始值(208Pb/204Pb)i、(207Pb/204Pb)i和(206Pb/204Pb)i使用二阶段演化模式进行计算。 金属硫化物来自矿石样品,将其无污染粉碎至40~60目,再在实体显微镜下分别逐粒挑选出辉钼矿、黄铁矿单矿物颗粒,保证纯度99%以上,金属S-Pb同位素分析测试均在核工业北京地质研究院分析测试研究中心完成。其中,S同位素测试所采用仪器型号为Delta v plus气体同位素质谱计,检测方法和依据为DZ/T 0184.14-1997《硫化物中硫同位素组成的测定》,测量结果以Vienna陨硫铁(V-CDT,其δ34S‰=0)为标准,记为δ34SV-CDT,分析精度优于±0.2‰。硫化物参考标准为GBW-04414、GBW-04415硫化银标准,其δ34S分别是−0.07±0.13‰和22.15±0.14‰。Pb同位素测试所采用仪器型号为ISOPROBE-T热表面电离质谱仪和Phoenix热表面电离质谱仪,检测方法和依据为DZ/T 0184.12-1997《岩石、矿物中微量铅的同位素组成的测定》,普通铅标准为NBS 981未校正结果:208Pb/206Pb=2.164 940±15,207Pb/206Pb=0.914 338±7,204Pb/206Pb=0.0591 107±2,全流程本底Pb<100 pg。测试结果表示为:结果(2σ)。 此数据可为海南岛罗葵洞钼矿床日后在地球化学模型分析中提供数据支持。 以上数据发表在《地球科学》EI 核心期刊,数据真实可靠,数据以Excel表格形式储存。
朱昱桦
海南岛罗葵洞钼矿床赋矿围岩锆石Hf同位素数据,于2017-2019委托中国科学院广州地球化学研究所同位素地球化学国家重点实验室检测,将全岩样品破碎至40~60目左右后,经磁选及重液分选,在双目镜下手工挑选出晶型完好的锆石颗粒,后用环氧树脂制靶,并抛光至锆石内部结构充分暴露,之后对其进行阴极发光图像(CL)、背散射图像(BSE)、透射光图像和反射光图像的拍照,尽量选取无裂隙、无包体等合适的位置,采用Neptune Plus多接收器电感耦合等离子体质谱仪和RESOlution M-50激光剥蚀系统进行测试,测试时挑选U-Pb年龄较谐和的锆石进行测试,激光剥蚀斑束直径为45 μm,频率为6 Hz。所测锆石的176Lu/177Hf和176Hf/177Hf比值以176Lu/175Lu=0.0265和176Yb/172Yb=0.5886为标准进行校正计算,εHf(t)计算采用176Lu的衰变常数为1.867×10-11 a-1,球粒陨石现今的176Hf/177Hf=0.282772和176Lu/177Hf=0.0332,Hf亏损地幔模式年龄(TDM1)的计算采用现今亏损地幔的176Hf/177Hf=0.28325和176Lu/177Hf=0.0384,Hf同位素二阶段地壳模式年龄(TDM2)计算时假设大陆平均地壳的176Lu/177Hf=0.015。 此数据可为海南岛罗葵洞钼矿床日后在地球化学模型分析中提供数据支持。 以上数据发表在《地球化学》核心期刊,数据真实可靠,数据以Excel表格形式储存。
朱昱桦
本研究在前人研究的基础上,在电子显微镜下对盘龙铅锌矿进行了系统的岩相学分析,同时利用扫描电镜能谱分析发现放射状重晶石成分较细脉状重晶石纯净,不含Sr同位素,认为放射状与细脉状重晶石为不同期次的产物,放射状重晶石形成于原生沉积期,而细脉状重晶石形成于活化改造期。其次主要通过对原生沉积期和活化改造期重晶石内的流体包裹体利用冷热台分析,测得重晶石内流体包裹体一系列的均一温度和冰点温度,通过对这些温度分析发现,原生沉积期的均一温度均值为147.2°,冰点温度均值为-4.7°,根据冰点温度推算出的盐度均值为7.09%NaCleqv;活化改造期的均一温度均值为138.9°,冰点温度均值为-7.75°,根据冰点温度推算出的盐度均值为10.90%NaCleqv,通过与前人研究对比分析发现,盘龙铅锌矿原生沉积期流体特征与SEDEX型矿床流体特征十分相似,成矿流体主要是蒸发的海水;活化改造期形成的重晶石可能是原生沉积成矿后,浅成低温热液侵入改造矿体或先存矿体受到了晚期又一次热水喷流事件的影响。
牛佳, 郑义
我们对华北克拉通北岩17个橄榄岩捕虏体中共生的地幔矿物进行了系统的双稀释剂法+Neptune MC-ICP-MS和Triton TIMS的铬稳定同位素分析,实验均在中国科学技术大学中科院壳幔物质与环境重点实验室完成,分析了包括二辉橄榄岩、富单斜辉石二辉橄榄岩和异剥橄榄岩等样品主要单矿物的Cr同位素组成,其中后面两类橄榄岩可能曾受到熔/流体交代作用。这些矿物均表现出较大的变化范围:橄榄石δ53Cr值为-0.43±0.03‰(2SD)到0.09±0.02‰(2SD)、单斜辉石δ53Cr值为-0.32±0.02‰(2SD)到0.14±0.02‰(2SD)、斜方辉石δ53Cr值为-0.32±0.04‰(2SD)到0.19±0.02‰(2SD),以及尖晶石δ53Cr值为-0.33±0.06‰(2SD)到0.23±0.02‰(2SD)。其中,我们认为二辉橄榄岩不同矿物对的铬同位素结果(例如在870°C至970°C下,Δ53CrSpl-Ol为0.153‰至0.16‰的,Δ53CrSpl-Py为0.04‰至0.11‰,Δ53CrPy-Ol为0.05‰至0.10‰),记录了可测量的、系统的矿物间平衡Cr同位素分馏,与通过XANES确定的矿物中Cr2+/ΣCr值所预测的模型计算结果高度吻合。该分馏值可以基本上解释在地球橄榄岩和月球玄武岩中观察到的部分熔融和岩浆结晶过程中的Cr同位素行为。相比之下,我们发现交代作用可能通过矿物-熔体相互作用和/或动力学扩散的方式来影响北岩地区交代的富单斜辉石二辉橄榄岩和异剥橄榄岩中矿物的Cr同位素组成,从而导致矿物间Cr同位素分馏不平衡。 我们的发现确定了高温矿物之间的平衡分馏系数,以及其与氧逸度环境的定量关系,为今后利用Cr同位素体系研究行星演化的氧逸度环境具有重要意义。
沈骥
本文数据包含英安玢岩和流纹斑岩的全岩主量元素和微量元素、锆石U–Pb年龄和Hf同位素数据。样品采集自西藏中部班戈地区的英安玢岩和流纹斑岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。数据质量可靠。通过获得的数据,可以限定区域内北部拉萨地体碰撞后晚白垩世岩浆作用的时代、成因和形成背景。
易建康
通过对青藏高原新元古代和早古生代地质演化的综合分析,利用LA-ICP-MS对岩体中锆石 U-Pb 年龄进行测定、用XRF测定岩体在主要氧化物和微量元素数据,用EPMA测定辉长岩中辉石的主量元素数据,通过对上述所获数据的分析,我们可以获得该岩体的形成年龄及其地质演化特征,通过结合前人研究加上区域地质特点和所获地球化学相关资料,本研究认为扬子和华夏地块可能沿钦杭断裂带缝合,形成了最早的新元古代弧后系统,早古生代的基性岩主要是新元古代俯冲改造地幔的再熔产物。
虞鹏鹏, 郑义
本数据集为青藏高原164个湖泊1978~2017年日尺度湖面温度产品。首先基于MOD11A1产品获取湖面像元均值得到2000~2017年日尺度湖面温度序列。其次改进湖泊水温模型air2water以实现全年湖面温度的逐日连续模拟。进而以气象站逐日气温数据为模型驱动数据,MOD11A1监测的湖面温度为模型率定和验证数据,重建青藏高原1978~2017年日尺度湖面温度序列。与遥感监测结果相比,所有湖泊纳什效率系数高于0.6,偏差分布于±055℃之间。数据集可用于分析青藏高原湖面温度过去几十年的长时序变化,对于评估气候变暖对青藏高原湖泊水热平衡、水质及湖泊生态系统变化具有重要意义。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
本数据集主要包括对中国东部玄武岩样品的V同位素分析结果,数据来自于晚中生代到新生代样品。使用的仪器包括为MC-ICPMS。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试钒同位素,测试时选择国际通用的标准样品对测试数据进行监控。获得的V同位素数据为幔源岩浆岩储库的V同位素组成提供信息,利用V同位素揭示了中国东部新生代碱性玄武岩的氧逸度高于科马提岩、洋中脊玄武岩及洋岛玄武岩,可能与太平洋板片释放的碳酸盐熔体氧化周围地幔Fe2+,提高地幔Fe3+含量有关。
黄方
本数据集主要包括对中国东部玄武岩样品的Mg和Zn同位素分析结果,样品采样地点包括南京、绍兴、宁德、三名、漳州等地区,样品为晚中生代到新生代玄武岩。主要包括全岩主/微量元素、Sr-Nd-Mg-Zn同位素分析。使用的仪器包括XRF、ICP-MS、MC-ICPMS。主量元素由XRF获取,样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试锶、钕、镁和锌同位素,测试时选择国际通用的标准样品对测试数据进行监控,测试于2018-01-31 至 2020-05-31期间完成。获得的数据对幔源岩浆岩的Mg-Zn同位素组成提供重要信息。
黄建
本数据集主要包括对铜山口采集的早侏罗到晚白垩时代的斑岩性铜矿床样品的Fe和Si同位素分析结果。采样扬子河长江下游地理位置大概为北纬:28°~33°,东经:116°~123°。样品类型包括浸染状黄铁矿、黄铜矿、云母、磁铁矿等,主要包括全岩主量元素、Fe-S同位素分析。使用的仪器包括XRF,MC-ICPMS,MAT253等。主量元素数据由XRF获取。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS和MAT253测试硅同位素和硫同位素,测试时选择国际通用的标准样品对测试数据进行监控。测试于2019-01-31 至 2020-05-31期间完成。数据对Fe同位素在矿床中的应用提供重要信息。
黄方
本数据集主要包括对缅甸Hkamti硬玉矿采集的硬玉岩的Si同位素分析结果,样品来自于160Ma以来。样品地理位置大概为北纬:24.2°~24.6°,东经:94.2°~95.4°。样品类型包括白色硬玉岩、绿色硬玉岩、蛇纹岩、富云母石英片岩等,Si同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试硅同位素,测试时选择国际通用的标准样品对测试数据进行监控。测试于2018-08-30 至 2019-06-30期间完成。获得的数据结果发现高δ30Si的深海硅质岩可能是俯冲带岩浆中硅的主要来源,数据为示踪俯冲带流体中Si的来源提供信息
黄方
本数据集主要包括对美国加州东海岸侏罗纪到白垩纪时代的变质橄榄岩的Si同位素分析结果,样品采样具体位置为北纬35°~36°,西经121°~122°。样品类型包括部分蛇纹岩化橄榄岩、完全蛇纹岩化橄榄岩、滑石岩化蛇纹岩,Si同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试硅同位素,测试时选择国际通用的标准样品对测试数据进行监控。杂岩体中板块流体的Si同位素组成接近地幔橄榄岩。在变质脱水过程中,残余俯冲板块的Si同位素组成也可能没有明显变化。测试于2018-01-01 至 2019-05-01期间完成。
于慧敏
本数据集主要包括对美国国家标准与技术研究所开发的重晶石标准样品以及中国国家标准样品的Ba同位素分析结果,Ba同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试钡同位素,测试时选择国际通用的标准样品对测试数据进行监控,测试于2020-01-31 至 2021-05-31期间完成。数据结果表明天然重晶石间Ba同位素分馏作用显著,这将为研究海洋天然重晶石进行古海洋生产力示踪应用提供重要前提。
黄方
位于华北地块南缘泰山庙A型花岗岩体的LA-ICP-MS锆石U-Pb同位素年龄表明,中粗粒钾长花岗岩形成时代为121 Ma~116 Ma,大斑中细粒钾长花岗岩形成时代为122 Ma~120 Ma,细粒似斑状花岗岩年龄为122 Ma~120 Ma。XRF和ICP-MS分析结果表明,全岩主量元素组成具有高硅,富碱,低镁,微量元素特征表现为富集Rb、Th、U,明显亏损Ba、Sr、P、Ti、和Eu,明显分异的Nb/Ta和Y/Ho值。TIMS方法获得的全岩Sr-Nd同位素组成显示富集的古老地壳特征。数据来源于研究项目“国家重点研发计划“燕山期重大地质事件的深部过程与资源效应”(2016YFC0600404)。
陈福坤
本数据集主要包括对中欧波西米亚造山带型富铁橄榄岩和辉石岩的Zn同位素和微量元素分析结果,样品来自于晚古生代。样品类型包括富Mg橄榄岩、富铁橄榄岩、辉石岩,Zn同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得,微量元素数据在全岩样品经国酸消解后通过ICP-MS测试获得。样品酸消解使用ICP-MS测试微量元素组成,并通过离子交换树脂分离后,随后用MC-ICPMS测试锌同位素,测试时选择国际通用的标准样品对测试数据进行监控。
黄建
本数据集对美国国家地质勘探局开发的橄榄岩标准样品PCC-1和DTS-2B以及中国东部三个新生代橄榄岩样品进行主微量元素分析、使用的仪器包括XRF,ICP-MS,LA-ICPMS。全岩样品通过无污染碎样至200目以下,然后用XRF和ICP-MS进行主微量元素测试。随后制成熔融玻璃使用LA-ICPMS进行微量元素测试。完全的样品熔合,特别是对于具有耐酸矿物(尖晶石和金红石)的样品,以及长期保存的玻璃允许无限重复测量微束技术。同样的方法也可用于其他地幔岩石的分析,如榴辉岩和辉石岩。测试分析于2020-01-31 至 2021-05-31期间完成。
黄方
本数据集主要包括对太平洋IODP1256钻孔获取的洋中脊玄武岩Si同位素分析结果,样品具体地理位置为6°4‘ N,91°56’W。样品类型包括火山岩,席状岩墙,转换带及辉长岩部分样品来自于~15Ma以前。Si同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试硅同位素,测试时选择国际通用的标准样品对测试数据进行监控。获得的Zn同位素数据为全球蚀变洋壳储库的Si同位素组成提供重要信息,测试于2017-01-31 至 2018-06-30期间完成。
黄方
本数据集对美国国家标准与技术研究所开发的现代标准样品SRM683进行Zn同位素分析,在中国科学技术大学得到的Zn块,地理位置为北纬31°5‘、东经117°。Zn同位素数据在样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得。样品酸消解并通过离子交换树脂分离后,随后用MC-ICPMS测试锌同位素,测试时选择国际通用的标准样品对测试数据进行监控。获得Zn同位素数据可以用作以后国际同行建立Zb同位素分析方法时所使用的新的Zn同位素国际间插标准,为实验室间数据的比较提供重要意义
黄方
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件