1)数据内容(包含的要素及意义):高寒网21个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、双湖站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(寒旱所)、海北站、三江源站、申扎站、贡嘎山站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2018年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网21个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
高质量高时空分辨率降水产品在理解全球和区域尺度的“水-碳-能”循环研究中扮演重要角色。卫星遥感为监测降水高时空变异特征提供了不可替代的手段,尤其是在自然条件恶劣的无资料地区。但由于是间接估算而来,卫星遥感降水产品不可避免地存在系统偏差和随机误差。聚焦于目前主流的遥感降水产品(GPM IMERG及其回推产品,0.1°/half-hourly,2000-present)获取过程中的潜在不足,如该产品的矫正时空尺度为1.0°/monthly,本研究在更高时空尺度上提出一套新的时空矫正算法,并引入高质量地面观测产品APHRODITE(0.25°/daily),生产了一套亚洲地区同期高质量高时空分辨率降水数据集AIMERG(0.1◦/half-hourly,2000–2015)。AIMERG降水数据集能够同时有效考虑卫星估计和地面观测的各自优势,其系统偏差和随机误差在中国地区不同时空尺度上的表现优于GPM IMERG,为亚洲地区相关领域的科学研究及生产实践提供了更为丰富且可靠的基础数据。
马自强
本数据集来源于论文:Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. 本数据集包含青藏高原高山植物小垫柳Fasta格式的基因组组装文件,包括核苷酸(DNA)、核糖核酸(RNA)、蛋白质编码序列(Protein)序列数据,以及gff格式的基因组组装注释文件。 组装等级:染色体级别 基因组覆盖程度:全基因组 参考基因组:是 组装方法:SMARTdenovo 1.0; CANU 1.3 测序方法及测序深度: PacBio, 125×; Illumina Hiseq X Ten, 43×; Oxford Nanopore Technologies, 74× 基因组组装统计: 基因组大小(bp):339,587,529 GC含量:34.15% 染色体数量:19 细胞器基因组数量:2 基因组组装序列数量:30 最大组装序列长度(bp):39,688,537 最小组装序列长度(bp):57,080 平均组装序列长度(bp):11,319,584 基因组组装序列N50(bp):17,922,059 基因组组装序列N90(bp):13,388,179 全基因组组装注释: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 详细的注释信息请参见附件。 本数据集中也包含文章中Supplementary Information中的表格数据,数据列表参见附件。 基因组项目号为:GWHAAAA00000000(https://bigd.big.ac.cn/gwh/Assembly/663/show)。
陈家辉, 杨永平, Richard John Abbott, 孙航
This data set is the oxygen isotope data (δ18O) and its temperature reconstruction from the Chongce ice cores, in western Kunlun Mountains, Northwestern Tibetan Plateau. The Chongce ice cores were dated back to 7 ka BP by a two-parameter flow model (2p model) constrained by the AMS 14C ages. The δ18O measurements were performed at Nanjing University by a Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model: Picarro L2120-i), with the analytical uncertainty of less than 0.1‰. Our reconstructed temperature record shows a long-term warming trend until ~2 ka BP, followed by an abrupt change to a relatively cool period until the start of the industrial-era warming. In addition, the record shows that temperatures during the recent decades are almost the highest during the past 7 ka BP, highlighting the unusual warming forced by anthropogenic greenhouse gases.
Hongxi Pang
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
为描述青藏高原及周边地区主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2020年集中在新疆维吾尔自治区伊犁地区共采集209个共707份当地主要驯化动物血液或、组织、粪便样品,其中包括12匹马心肝脾肺肾等RNA样品。本数据集包含新疆伊犁地区绵羊、家马、黄牛、家犬、家鸡、家鹅、山羊等物种的物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。本数据集还包含采样个体外观照片,以jpg格式存储。
徐峰
为描述青藏高原及周边地区(泛第三极地区)主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景。2020年我们选取31个肯尼亚当地商品鸡和土鸡肾、脾、空肠RNA组织样品,提取总RNA后建库并做转录组测序。测序产生了一批180G转录组测序原始数据。为探索泛第三极地区家鸡驯化、迁徙、扩张等群体历史事件提供基础数据,并进一步探讨驯化动物对干燥等恶劣环境的适应机理提供资料。本数据集包含31个家鸡个体物种、品种、性别、表型等基本样品信息excel表,和31个家鸡个体3种组织转录组测序原始数据及MD5值。
彭旻晟
1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the NSE values were above 0.9. The maximum error of the GPR-measured data was ± 2.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.
张寅生
1)本数据包含中科院加德满都科教中心2019年基本气象数据;参数有:气温 ℃,相对湿度%,气压Kpa, 降水mm, 辐射W/m2, 风速 m/s。表2为气象站说明表格,包含地理位置及下垫面情况。 2)数据来源及加工方法:数据来源于中国科学院加德满都科教中心小时数据,气温、气压、辐射和风速计算日平均,降雨计算日总和。 3)数据质量描述:这些参数中,气压数据质量较差缺失较多,2019年6-8月仪器故障,数据有缺失 4)该气象数据应用前景广泛,与南亚不同区域的资料对比分析,可服务于如大气科学、水文学、气候学、自然地理学和生态学等背景的研究生和科学家。
朱立平
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
湖泊沉积物是重建过去气候变化的重要代用材料,其中沉积物的年代框架是基础。纹层是湖泊沉积物中成对形成的一种沉积层,通常一年为一个周期。依托中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”和第二次青藏高原综合科学考察研究等研究计划,作者在青藏高原中部湖泊江错获取了长达1米的沉积物重力钻岩芯,发现保存完好的纹层。随后制作了岩芯薄片并对纹层及其厚度进行计数和测量,得到了从公元81年到2015年的年代序列。利用纹层厚度中粗颗粒层厚度百分比这一代表降水的指标重建了过去2000年这一地区的降水。高分辨率高精度的年代和降水记录可以提供可靠的气候环境变化的背景,对古气候模拟和古文明的兴衰等提供参考。
侯居峙
这组数据是2000-2014年间藏东南易贡藏布东段71条冰川的年均冰储量变化数据集,采用ESRI SHP矢量多边形数据格式存储。每条冰川的冰储量变化通过SRTM DEM、Dh2000-2014、冰川专题矢量数据(CGI2/TPG1976/RGI6.0)与冰密度 850 ± 60 kg m−3计算而得。Dh2000-2014基于一对2014年2月7日TSX/TDX SAR影像与2000年SRTM DEM数据,采用差分干涉技术(D-InSAR)获取。基于CGI2/TPG1976/RGI6.0提取区域冰川矢量数据与冰川编号。SRTM DEM是参考DEM与基准DEM,在数据统计中用于划分不同海拔范围,其空间分辨率为30m。属性表中包括的数据项有:GLIMS-ID表示冰川编号、Area表示冰川面积(m2)、EC_m_a-1表示2000-2014年期间每条冰川的年均冰面高程变化(m a-1)、MB_m w.e.a-1表示2000-2014年期间每条冰川的年均物质平衡变化(m w.e.a-1)、MC_m3 w.e.a-1表示2000-2014年期间每条冰川的年均冰储量变化(m3 w.e.a-1)、MC_Gt.a-1表示2000-2014年期间每条冰川的年均冰储量变化(Gt a-1)、Uncerty_EC是每条冰川冰面高程变化的误差(±m a-1)、Uncerty_MB是每条冰川物质平衡误差(±m w.e. a-1),UT_MCm3w.e. a-1是每条冰川冰储量变化误差(±m3w.e. a-1)。该组数据可用于藏东南地区冰川消融水文水资源效应研究。
叶庆华
该数据集包含了2019年05月01日至2019年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站的物候相机观测数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为2592*1944,本数据集中的物候照片是在每天12:10拍摄的,拍摄时间误差在±10 min。图片命名方式为BSDCJZ BEIJING_IR_Year_Month_Day_Time.
李小雁
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
This is a dataset of treeline shift rates including 143 alpine treeline sites in the Northern Hemisphere. It gives the following information for each treeline site: treeline form, study site, latitude, longitude, reference, tree species, elevation, study period and annual mean elevational shift rate (m/yr).
LU Xiaoming, Eryuan Liang
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
这组数据是1974-2017年期间希夏邦马峰地区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2017年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX 2017(DH2000-2017)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2017数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2017。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2017年间年均冰面高程变化误差为±0.11 m,大地测量物质平衡误差为±0.10 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Area_m2是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2017表示2000-2017年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2017表示2000-2017年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2017表示2000-2017年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3w.e. a-1)。 Ut_EC00_17,是2000-2017年冰面高程变化误差,Ut_MB00_17,每条冰川2000-2017年冰川物质平衡误差(m w.e. a-1),Ut_MC00_17是每条冰川2000-2017年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉希夏邦马峰地区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
这组数据是1974-2014年期间尼泊尔Ponkar冰川区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2014年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX2014(DH2000-2014)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2014数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2014。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2014年间Ponkar冰川区年均冰面高程变化误差为±0.13 m,大地测量物质平衡误差为±0.11 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Gla_area是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2014表示2000-2014年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2014表示2000-2014年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2014表示2000-2014年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3 w.e. a-1)。 Ut_EC00_14,是2000-2014年冰面高程变化误差,Ut_MB00_14,每条冰川2000-2014年冰川物质平衡误差(m w.e. a-1),Ut_MC00_14是每条冰川2000-2014年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉南坡Ponkar冰川区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
利用2004年2月至2008年10月ICESat R633卫星测高数据使用重复轨道平面拟合方法,获取南极Lambert Glacier/Amery Ice Shelf system区域的高程变化,使用IJ05 R2模型进行GIA 改正、投影面积变形改正,进而得到 30km*30km 分辨率的表面高程变化率,通过粒雪密度模型将结果转换为物质变化,和重力卫星 GRACE 重力卫星时变模型所得南极物质变化进行比较。
谢欢, 李荣兴
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
本数据集为2019年祁连山地区人类活动数据。以祁连山地区的矿山开采、违规房屋整改、新增道路、土地平整及生态修复等资料为基础,通过高分辨率遥感影像,对比统计前后变化地块。对祁连山地区地类发生变化的地块,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2019年祁连山地区矿山开采、违规房屋整改、新增道路、土地平整及生态修复等属性信息,统一进行图斑及其属性的录入和编辑,形成2019年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为2019年祁连山人类活动监测提供数据支撑。
祁元, 张金龙, 周圣明, 李娜, 王宏伟
本数据集包含国际脆弱生态系统国家公园遴选标准及其数据库,选取美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国为代表,具体内容包括: 表一包括:不同级别的遴选标准,其中包括第一层级的指标4个,第二层级的指标16个,第三层级的指标72个; 表二包括:美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国家的国家公园清单及相关信息,选取指标包括所属国家、国家公园名称、受保护时间与监理时间、面积、描述、IUCN管理类型、治理类型、管理机构、国际标准。
裴惠娟
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,使用Aethalometer在线测量大气黑碳含量,数据时间分辨率:逐日.这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。此数据是先前发布的《青藏高原大气黑碳含量5个站点观测资料(2018)》的更新。 5个站点信息如下: 纳木错:30°46'N, 90°59'E, 4730 m a.s.l 珠峰站:28.21°N, 86.56°E, 4276 m a.s.l 藏东南:29°46'N, 94°44'E, 3230 m a.s.l 阿里站:33.39°N, 79.70°E, 4270 m a.s.l 慕士塔格:38°24’N, 75°02’E, 3650 m a.s.l
王茉
环北极不同类型多年冻土区NDVI变化数据集(1982-2015),时间分辨率为每5年一期,覆盖范围为整个环北极国家, 空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础, 使用GIS方法和生态学方法结合, 量化了北半球多年冻土对生态系统的调节服务功能, 其所有数据进行了质量控制。利用环北极不同类型多年冻土区划,借助1982-2015年期间NDVI值,使用GIS方法,计算了1982-2015年期间环北极不同类型多年冻土区的NDVI变化,形成了“1982-2015环北极不同类型多年冻土区NDVI变化数据集”。同时,综合多个文献,对其数据进行了质量控制。
王世金
本数据集包括藏东南站、阿里站、慕士塔格站、珠峰站和纳木错站的大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。该数据为已发布数据《青藏高原不同站点气溶胶颗粒PM2.5浓度数据集(2018)》的更新。
邬光剑
同济大学沈云中教授卫星重力团队利用GRACE Level-1B卫星重力数据解算了2002年至2016年的格陵兰区域质量变化时间序列,空间分辨率为1度×1度,时间分辨率为1个月。该时间序列的参考时间为2004年1月与2009年12月之间的中间时刻。 在数据处理过程中,采用ICE5G模型扣除冰后回弹GIA影响,同时利用德国地学研究中心最新发布的AOD1B RL06去混频模型,回加了GAD质量变化贡献。
沈云中
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
地表反照率是地表能量平衡的重要参量之一。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感地表反照率数据。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.049。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
周纪, 刘绍民, 董惟琛
为研究蔓菁的扩散与人类活动之间的关系,我们将来自青藏高原及周边区域,以及巴基斯坦,印度,尼泊尔,德国,日本等地的蔓菁品种进行重测序,同时对基因家族进行聚类,以及特有、共有基因和基因家族统计,此外还将进行基因家族扩张收缩分析,系统发育树的构建,全基因组复制事件等分析。目的是解析人类活动和区域气候环境双重压力下,高原各地的传统蔓菁品种适应高原的分子基础。因此这项研究有助于揭示蔓菁适应高原生态环境的适应性机制以及在进化过程中人工驯化和人类选择对其遗传分化的影响。
段元文
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(西北院)、海北站、三江源站、申扎站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2019年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
本数据集包括黑河流域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
该数据集包含了2018年10月23日至2019年12月31日的青海湖流域水文气象观测网青海湖鱼雷发射基地站涡动相关仪观测数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726''E,北纬 36° 35' 27.337''N,海拔3209m。涡动相关仪的架高16.1m,采样频率是10Hz,超声朝向北向偏移西40°,超声风速温度仪(Gill-windmaster pro)与CO2/H2O分析仪(Li7500A)之间的距离约是17cm。 涡动相关仪的原始观测数据采样频率为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差(较插补数据好)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2018年10月23日至2019年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726''E,北纬 36° 35' 27.337''N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
为描述青藏高原及周边地区主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2019年集中在西藏自治区林芝地区察隅县共采集187份当地主要驯化动物样血液或、组织、粪便等品。本数据集包含西藏林芝察隅县家鸡、家猪、黄牛、家马、家犬、犏牛等的物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。本数据集还包含采样个体外观照片,以jpg格式存储。
彭旻晟, 尹婷婷
本数据集为青藏高原东南部腾冲青海湖10m岩芯叶蜡氢同位素数据。腾冲青海湖为中国西南地区高黎贡山一小型火山口湖,岩芯样品于2017年在距湖心约4m位置获取,利用AMS-14C测年建立年代序列。正构烷烃叶蜡氢同位素利用Agilent6890 GC气相色谱仪和DeltaPlus XL型色谱同位素质谱联用测定分析,该数据反应了该地区大气降水同位素的信息,对研究西南季风区过去4万年以来季风降水变化具有重要的作用。数据在样品采集、前处理提取及仪器测试各个环节严格按照相关操作规程完成。
赵成
为描述青藏高原及周边地区主要驯化动物疾病情况,调查青藏高原主要家养动物的疫病情况,对各主要家养动物的主要流行疾病进行抗病和易感个体的遗传样本及肠道微生物样品的采集工作。我们在青海省海西蒙古族藏族自治州乌兰县漠河骆驼场采集骆驼粪便。本数据集是青海省骆驼的肠道微生物16srRNA测序数据。通过提取骆驼粪便的微生物总DNA,设计引物扩增细菌的V3-V4区基因片段,再进行二代高通量测序得到相应数据。本数据集共测序44份样品。本数据集可应用于挖掘抗病个体基因层面的遗传资源,找到相应的候选基因。
段子渊
该数据集包含了2019年4月26日至2019年12月31日的青海湖流域水文气象观测网温性草原芨芨草站气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场南部,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
数据为2019年夏天的巴尔喀什湖水质测量数据,通过数理统计、Piper 三线图、Gibbs 模型和主成分分析(PCA)等方法,对巴尔喀什湖流域不同水体的化学参数进行分析,初步研究了该区域水化学类型和同位素空间分布特征,探讨了其形成原因和环境意义。结果表明,不同水体的水化学类型不同,湖泊水体的主要化学类型为SO4-Na和Cl-Na,入湖河流的水化学类型为HCO3-Ca型,其中伊犁河水化学类型从上游到下游由重碳酸盐型过渡到硫酸化物型、氯化物型;Gibbs图显示湖泊水体离子组成位于蒸发作用区,河流水体离子组成位于蒸发作用和岩石风化作用之间,伊犁河从上游到下游向蒸发控制带偏移,反映了上游河水受降水、冰雪融水的补给影响较大,而下游水体受蒸发作用影响较大;此外,PCA分析指示人类活动对湖泊、伊犁河中下游和其他入湖河流水化学的影响。
吴敬禄
归一化植被指数在研究植被长势、地物分类方面有重要作用。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过pix4D mapper进行拼接,并由pix4D mapper自动进行拼接后影像的植被指数计算。最后将pix4D mapper拼接的单航次影像利用ArcGIS镶嵌得到整个飞行区域影像。
周纪, 刘绍民, 金子纯
该数据集包含了2019年4月28日至2019年12月31日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67"N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2019年6月1日至2019年9月20日的黑河水文气象观测网下游混合林站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是胡杨与柽柳混合。观测在混合林站(101.1335E, 41.9903N)旁开展,样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2018年9月3日至2019年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件