木里煤矿是青藏高原的一个典型工矿区,以木里煤矿为例,在区域的划定上,我们采取其东西南北四个方位的坐标界限对其进行裁剪,得到一个矩形区域,并将其作为木里煤矿的矿区范围。我们采用中国科学院地理所资源环境与数据中心提供的全国1km土地利用遥感监测数据,其中2000、2005、2010年三期的数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,2015、2020年两期以Landsat8 OLI/TIRS遥感影像为主要数据源,并均通过人工目视解译生成。裁剪出木里矿区,得到2000-2020年五期土地利用数据,数据格式为栅格TIF,分辨率为1km。
刘振伟, 陈少辉
陆表水域是陆地水循环中的重要载体。卫星遥感是陆表水体动态监测的有效手段,陆地水域时空演变可揭示自然因素及人类活动对水域的影响规律,对合理开发、利用和保护陆表水域有重要的意义。SSWMF全国逐月无缝陆表水域数据集是基于联合多源光学和雷达卫星观测、适用于大范围陆表水域动态监测方法SSWMF提取得到,输入数据包括MODIS、Landsat8、Sentinel 2的地表反射率数据和Sentinel 1的后向散射系数数据,基于Google Earth Engine遥感大数据平台计算得到。验证表明数据集的总体精度为92.39%。本数据集覆盖全国及周边区域,时间步长为每月,空间分辨率为30米。联合多星光学和雷达遥感的大范围陆表水域数据集可为湖泊水体动态、区域水旱灾害监测、水资源调查等提供帮助。
杨永民
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2015年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2015年5月10日-9月21日,其中LAI自5月25日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了21次观测(LAI为18次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
激光雷达、多光谱和热红外数据是水文、生态、环境监测等研究领域的重要观测数据。本数据集为2020年黑河中游天地一体化综合观测试验无人机观测数据。数据集包括2020年8月16日至21日的无人机遥感数据,无人机平台为大疆精灵4-多光谱版。包括大满超级站(8月16日至21日)、花寨子站(8月19日)、湿地站(8月21日)的激光雷达数据,激光扫描系统为Tovos DroneScan,扫描频率30万点/秒,点密度100点/平方米,扫描精度5厘米;大满超级站(8月18日)、花寨子站(8月19日)、湿地站(8月21日)的多光谱数据,数据集包括5个波段影像,分别为蓝(450nm±16nm)、绿(560nm±16nm)、红(650nm±16nm)、红边(730nm±16nm)、近红外(840nm±26nm)波段;以及湿地站和花寨子站对应生成的NDVI和反射率数据产品,以上数据的空间分辨率约为0.2m;此外,还包括花寨子站(8月18日和19日)、湿地站(8月21日)的热红外数据,热红外通道的波长范围:7.5-13.5μm,成像系统灵敏度(NEDT)< 50MK,最高帧率:30HZ,场景范围(高增益):640×512: -25°至135℃,336×256: -25°至100℃,场景范围(低增益):-40°至550℃。
晋锐
本数据集来源于论文:Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15, 4261–4279. 在这篇文章中,分别基于地面站点数据、Landsat数据和MODIS积雪产品,首次在长时间尺度上(1982-2018)对AVHRR GAC 积雪产品在兴都库什喜马拉雅山脉的表现进行全面的评估,包括该产品的精度/准确性在长时间序列上的一致性,以及该产品与Landsat和MODIS积雪数据在空间分布上的一致性,并揭示了影响AVHRR GAC积雪产品精度的主要因素。
吴小丹
西藏自治区生态资源消耗数据集包括省级-市级-县级三个尺度的2000-2019年生态资源消耗数据,根据西藏自治区实际情况,生态资源消耗主要指农牧业生产活动中消耗的生态资源量。生态资源消耗量计算是基于粮食产量数据、牲畜存栏量数据和畜产品产量数据,结合人类占用净初级生产力(HANPP)的评估方法,将生物量数据转换为碳含量数据,进而测算出生态资源消耗量。生态资源消耗量数据是生态压力与生态承载力研究的基础数据,可以直接揭示人类农牧业生产活动对生态系统带来的压力。
闫慧敏
该数据集包含了2020年1月1日至2020年12月31日的40m塔自动气象站观测数据。站点位于河北省怀来县东花园镇,下垫面为水浇地玉米。观测点的经纬度是115.7923E, 40.3574N,海拔480m。 自动气象站安装在40m塔上,采集频率为30s,且10min输出一次。观测要素包括7层空气温度、相对湿度(3m、5m、10m、15m、20m、30m、40m),朝向为正北;7层风速(3m、5m、10m、15m、20m、30m、40m),风向(10 m),朝向为正北;气压(安装在防水箱内);雨量(3 m);四分量辐射和光合有效辐射(4 m),朝向为正南;红外表面温度(8 m),支臂朝向正南,探头朝向是垂直向下;土壤温湿度探头埋设在气象塔正南方1.5m处,土壤温度探头埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160 cm处,土壤水分传感器埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm;平均土壤温度埋在地下2, 4cm;土壤热流板埋设在地下6 cm处。 观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2020-6-10 10:30。 自动气象站发布的数据包括:日期/时间Date/Time,空气温度(Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m)(℃),相对湿度(RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m)(%),风速(Ws_3m, Ws_10m, Ws_15m, Ws_20m, Ws_30m, Ws_40m)(m/s),风向(WD)(°),气压(Press)(hpa),降水(Rain)(mm),四分量辐射(DR、UR、DLR、ULR、Rn)(W/m2),光合有效辐射(PAR)(umol/s/m2),地表辐射温度(IRT_1、IRT_2)(℃),土壤热通量(Gs)(W/m2)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(%)、多层土壤温度(Ts_2cm 、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(℃)、平均土壤温度TCAV(℃)。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 肖青, 徐自为, 柏军华
为描述青藏高原及周边地区主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2021年集中在新疆音郭楞蒙古自治州开展家养动物遗传资源调查与采集工作。本次科考共采集209个共500份当地主要驯化动物绵羊、鸽子、黄牛、山羊、鸡等物种血液样品。本数据集包含物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。本数据集还包含采样个体外观照片,以jpg格式存储。
杨维康, 徐峰
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2019年建设的塔吉克斯坦帕米尔高原冰川观测站,包含空气温湿度、大气压、风速风向、降水、雪深等数据。资料时间段为2019年11月1日—2020年11月30日,运用MS Office处理所得*.xlsx格式,数据质量较好,此数据可为研究冰川消融及其水文特征、水资源、生态环境等的潜在影响提供参考。气象观测要素,经过积累统计,加工成气候资料,为天气预报和经济活动提供珍贵的数据支持。广泛应用于农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门领域。
霍文
该数据集包含了2020年1月14日至2020年12月31日的10m塔涡动相关仪观测数据。站点位于河北省怀来县东花园镇,下垫面水浇地玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。涡动相关仪的采集频率是10Hz,架高为5 m,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15 cm。 发布的数据是采用Eddypro软件对原始采集的10Hz数据进行后处理得到的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对处理后输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据每30min内缺失率大于10%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 涡动相关仪发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(K),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度,感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE。感热、潜热、二氧化碳通量的质量标识分为三级(质量标识0:(Δst <30, ITC<30); 1: (Δst <100, ITC<100); 其余为2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 徐自为
该数据集包含了2020年1月1日至2020年12月31日的10m塔自动气象站观测数据。站点位于河北省怀来县东花园镇,下垫面为水浇地玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。 自动气象站安装在10m塔上,采集频率为30s,且10min输出一次。观测要素包括空气温度、相对湿度(5 m),朝向为正北;风速(10 m),风向(10 m),朝向为正北;气压(安装在防水箱内);雨量(10 m);四分量辐射(5 m),朝向为正南;土壤温湿度探头埋设在气象塔正南方1.5m处,土壤温度探头埋设深度为0cm、2cm、4cm、10cm、20cm、40cm、80cm、120cm和160 cm处,土壤水分传感器埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm;平均土壤温度埋在地下2, 4cm;土壤热流板(3块)埋设在地下6 cm处。 观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2020-6-10 10:30。 自动气象站发布的数据包括:日期/时间Date/Time,空气温湿观测(Ta_5m,RH_5m)(℃,%),风速(Ws_10m)(m/s),风向(WD)(°),降水(Rain)(mm),四分量辐射(DR、UR、DLR、ULR、Rn)(W/m2),地表辐射温度(IRT1、IRT2)(℃),土壤热通量(Gs_1、Gs_2、Gs_3)(W/m2)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(%)、多层土壤温度(Ts_2cm 、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(℃)、平均土壤温度TCAV(℃) ,气压(Press)(hpa)。 观测试验或站点信息请参考Guo et al. (2020),数据处理请参考Liu et al. (2013)。
刘绍民, 徐自为
Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate spatial (500 m) and temporal (8-day) resolutions over the entire globe for 2000–2016. This GPP dataset is based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these improvements aim to solve several critical problems existing in current GPP products. With a satisfactory performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate for regional to global carbon cycle studies.
张尧
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
张尧
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2017年建设的帕米尔高原红其拉甫梯度气象观测试验站,包含各气象要素的梯度数据。资料时间段为2019年11月18日—2021年10月8日,运用TOA5合并工具及MS Office等处理所得*.xlsx格式,数据质量较好,此数据可为开展帕米尔高原和中巴经济走廊地表辐射与能量收支规律研究提供支持,为陆面过程提供参考依据。 红其拉甫气象站在我国帕米尔高原,海拔4600m,靠近中国与巴基斯坦边境,资料及其珍贵。
霍文
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2016年建设的乌鲁木齐白杨沟乌拉斯台地区中天山草地陆—气相互作用观测试验站(分别为中天山草地生态系统监测站、中天山森林生态系统监测站与中天山山顶草地站),站内有辐射观测系统、梯度探测系统以及涡动相关系统,包含辐射、土壤与各气象要素数据。资料时间段为2019年9月1日—2021年10月13日,运用Eddrpro、LoggerNet、TOA5合并工具及MS Office等处理所得*.xlsx格式,数据质量较好,此数据可为开展草地与森林下垫面地表辐射与能量收支研究规律研究提供支持,为陆面过程提供参考依据。
霍文
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
霍文
温湿指数(THI)1973年由奥利弗(J.E.Oliver)提出,其物理意义是湿度订正以后的温度。它考虑了温度以及相对湿度对人体舒适度的综合影响,是衡量区域气候舒适度的一项重要指标。在参考已有关于生理气候评价指标分级标准的基础上,结合青藏高原自然地理特征,面向青藏高原人居环境适宜性评价需求,研制了青藏高原(3000米以上)温湿指数及其适宜性分区结果(包括不适宜、临界适宜、一般适宜、比较适宜与高度适宜)。
封志明, 李鹏, 林裕梅
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件