本产品提供了基于陆面模式VIC预估的未来2018-2065年的北极主要大河流域的月径流、蒸散发以及土壤水。空间精度为10km。北极主要大河流域包括Lena、Yenisey、Ob、Kolyma、Yukon和Mackenzie流域。根据IPCC第五次评估报告中CMIP5中IPSL-CM5A-LR模式提供的RCP2.6(低排放强度)和RCP8.5(高排放强度)情景结果,通过统计降尺度获取的适用于北极地区0.1°的未来气候情景驱动数据。应用在全球尺度校准后的陆面水文模型VIC,基于0.1°的未来气候情景驱动数据,预估获得未来气候变化下本世纪中叶北极大河流域径流、土壤水及蒸散发的月尺度时间序列。
唐寅, 汤秋鸿, 王宁练, 吴玉伟
该数据集包含了2021年1月1日至2021年12月31日的青海湖流域水文气象观测网青海湖鱼雷发射基地站涡动相关仪观测数据。其中3月18到5月30日数据由于仪器死机导致数据缺失。同时由于2021年青海省于研究站点鱼雷发射基地进行翻修,打造鱼雷发射基地的红色旅游区。该站点所有仪器于2021年5月30日全部拆除,准备于2022年7月重新安装。因此该站点2021年实际获得数据为2021年1月1日至2021年3月18日数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。涡动相关仪的架高16.1m,采样频率是10Hz,超声朝向北向偏移西40°,超声风速温度仪(Gill-windmaster pro)与CO2/H2O分析仪(Li7500A)之间的距离约是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差(较插补数据好)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2021年1月1日至2021年10月14日的青海湖流域水文气象观测网高寒草甸草原混合草原超级站涡动相关仪观测数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向为西北,超声风速温度仪(CSAT3A)与CO2/H2O分析仪(EC150)之间的距离约是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差(较插补数据好)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2021年1月1日至2021年10月13日的青海湖流域水文气象观测网亚高山灌丛涡动相关仪观测数据(由于仪器故障导致数据缺失)。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。涡动相关仪的架高2.5m,采样频率是10Hz,超声朝北,超声风速温度仪(Gill-windmaster pro)与CO2/H2O分析仪(Li7500A)之间的距离约是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2021年1月1日至2021年10月14日的青海湖流域水文气象观测网温性草原涡动相关仪观测数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。涡动相关仪的架高2.5m,采样频率是10Hz,超声朝向为北,超声风速温度仪(CSAT3A)与CO2/H2O分析仪(EC150)之间的距离约是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差(较插补数据好))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2021年1月1日至2021年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。但是由于2021年青海省于研究站点鱼雷发射基地进行翻修,打造鱼雷发射基地的红色旅游区。该站点所有仪器于2021年5月30日全部拆除,准备于2022年7月重新安装。因此该站点2021年实际获得数据为2021年1月1日至2021年5月29日数据。2021年5月30日到12月31日数据缺失。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于冬季湖水结冰故将水温探头收回,故2021.1.1-2021.5.31期间无水温数据记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月9日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日的青海湖流域水文气象观测网温性草原气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
本数据集为2021年的祁连山区域的人类活动参数,包括祁连山区域2021年的30m耕地产品和祁连山区域2021年的30m建设用地分布产品。该产品来源于祁连山区域2021年30m的土地覆盖分类产品。该产品以2020年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2020年土地覆盖分类产品的延续。1985-2020年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2021年的土地利用产品为1年1期。
杨爱霞, 仲波
本数据集提供青海湖沙柳河流域上游千户里小流域阴坡、阳坡和流域出水口三处位置2019年1月至2021年12月份的逐日土壤温湿度观测数据。千户里小流域地理坐标位于(37°25′N,100°15′E),海拔介于3565-3716m之间。该数据集的观测指标包括土壤含水量(SWC)和土壤温度(ST)。阴坡和阳坡土壤温湿度数据由ECH2O和5层5TE传感器观测,阴阳坡5层传感器安装深度分别为10 cm, 30 cm, 50 cm, 80 cm, 110 cm和10 cm, 30 cm, 60 cm, 90 cm, 120 cm。流域出口土壤温湿度数据由Trime监测及10层PICO32传感器观测,传感器布设深度分别为5 cm, 10 cm, 20 cm, 40 cm, 80 cm, 100 cm, 120 cm, 140 cm, 160 cm, 180 cm。该数据集可用于青海湖流域典型小流域土壤水文过程的定量分析并为模型模拟提供校验数据。
李小雁
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
面向中亚五国农业可持续发展,以耕地为目标,开展了未来气候变化变化变化影响下的耕地资源开发潜力评价。耕地开发潜力评价因子包括:地形因子(高程、坡度、坡向、与水资源距离)、土壤因子(盐渍化、土壤质地、土壤有机质含量、土壤pH值)、气候因子(降雨、气温、太阳辐射)、经济因子(道路密度、人口密度)。以2020年为基准年,在其他指标不变的条件下,采用CMIP6中的ESM1气候模式的平均降水和气温,预估了未来SSP5-8.5情景下的中亚耕地开发潜力。数据提供了2020s、2030s(2021-2040)和2050s(2041-2060)时间段的中亚五国耕地开发潜力的评价结果,空间分辨率为0.01°×0.01°。数据集可为中亚五国未来土地资源开发利用和农业发展等提供基础数据支撑。
蒋晓辉, 张俊俊
青藏高原丰富的生境多态性使其成为自然资源的宝库,高原植物中存在抗寒、耐旱、抗盐、抗紫外辐射、高光效等特殊的基因资源,如何挖掘利用并建立具有独立自主产权的功能基因资源,对我国现代农作物育种具有重要的潜在应用价值。高质量的染色体级基因组为解析植物适应性机制、抗逆性基因挖掘等相关研究提供了坚实的分子基础。本次数据汇交的内容主要为:大戟科青藏大戟的基因组数据集,包含染色体级基因组序列,注释文件;大戟科续随子的基因组数据集,包含染色体级基因组序列,注释文件;大戟科光棍树的基因组数据集,包含染色体级基因组序列,注释文件;豆科砂生槐的基因组数据集,包含染色体及基因组序列,注释文件。
杨永平
面向中亚五国农业可持续发展,以耕地为目标,开展了未来气候变化变化和土地利用变化影响下的土地资源开发利用风险评价。以耕地为目标的土地资源开发利用风险评价因子包括:地形因子(高程、坡度)、土地利用类型、土壤质地、降水、人均GDP、人均谷物产量、农业经济增长率、城市化水平、人口自然增长率、土壤有机质含量等。以2015年为基准年,在其他指标不变的条件下,采用CMIP6中五种气候模式(BBC-CSM2-MR、CanESM5、IPSL-CM6A-LR、MIROC6和MRI-ESM2-0)的集合平均降水以及未来不同排放情景下的土地覆盖资料,预估了未来不同情景下(SSP1-2.6、SSP2-4.5和SSP5-8.5)的中亚土地资源开发利用风险。数据提供了三种未来情景下2030s(2021-2040)和2050s(2041-2060)时间段的中亚五国土地资源开发利用风险,空间分辨率为0.5°×0.5°。数据集可为中亚五国未来土地资源开发利用和农业发展等提供基础数据支撑。
黄法融, 李兰海
面向中亚五国农业可持续发展,以耕地为目标,开展了土地资源开发利用风险评价。以耕地为目标的土地资源开发利用风险评价因子包括:地形因子(高程、坡度)、降水、土地利用类型、土壤质地、土壤有机质含量、人均GDP、人均谷物产量、农业经济增长率、城市化水平、人口自然增长率等。将上述指标进行无量纲的归一化处理,基于粮食生产与各因子间的多元线性回归模型确定了各指标对土地资源开发利用风险的权重。数据提供了1995年, 2000年, 2005年, 2010年, 2015年五个时间段的中亚五国土地资源开发利用风险,空间分辨率为0.5°×0.5°。数据集可为中亚五国土地资源开发利用和农业发展等提供基础数据支撑。
李兰海, 黄法融
本数据集以 4 种比例的燕麦草与祁连山高寒草甸天然牧草混合日粮,研究了夏季不同比例的燕麦草与天然牧草混合饲喂对放牧藏羊消化代谢的影响。包含放牧藏羊的干物质(dry matter, DM)、有机物质(organic matter, OM)、粗蛋白(crude protein, CP)、粗脂肪(ether extract, EE)、中性洗涤纤维(neutral detergent fiber, NDF)、酸性洗涤纤维(acid detergent fiber, ADF)采食量和消化率。通过对数据的分析,夏季全天然牧草可以满足藏羊的生长代谢,且不宜对其饲喂燕麦草。
彭泽晨
该数据集利用机器学习算法,生成了一套全球陆地高分辨率边界层高度数据集,时间范围为2017至2021年,其时间、空间分辨率分别为3小时和0.25º。机器学习以ERA5再分析资料和GLDAS地表参数为输入,高分辨率探空资料与ERA5获得的边界层高度之差作为输出,以此来建立训练模型。输入参量包括地形标准差、感热通量、潜热通量、向下长波辐射、向下短波辐射、总降水率、地表压强、地表温度等18个参数。无线电探空数据集包含全球370个站的约180万个剖面。总体而言,与从无线电探空仪反演得到的边界层高度相比,该数据集在时空覆盖和精度方面表现突出。该数据集对大量的科学研究和应用都有重要意义,包括空气质量、对流触发、气候和气候变化等。
郭建平, 张健, 邵佳
1985年祁连山国家公园土地利用类型的数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的矢量数据集。2000-2020年的3个数据集是基于GlobeLand30全球30米地表覆盖数据,经过掩膜提取等操作得到的30m分辨率的栅格数据集。所有数据集的土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。数据产品可以检测大多数人类活动所引起的地表覆盖变化,在实际应用中具有十分重要的意义,可以用此数据分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
1)数据内容:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集,数据包括祁连山典型小流域不同深度苔藓层体积密度、土壤大孔隙度和土壤石砾体积密度数据;2)数据来源及加工方法:在祁连山典型小流域采集苔藓层和苔藓覆盖下深度为30 cm的原状土柱,利用工业X射线三维显微镜对苔藓层和原状土柱进行扫描;3)数据质量描述:苔藓层分辨率40 μm,原状土柱分辨率68 μm;4)数据应用成果及前景:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集对于祁连山区的生态恢复、水资源管理和利用均有着重要意义,可为阐述祁连山的水源涵养功能及机理提供基础数据和理论支撑。
胡霞
本数据为泥石流风险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的危险性和易损性分析结果;根据联合国人道主义事业部(1992)给出的风险表达式:风险(Risk)=危险性(Hazard)×易损性(Vulnerability),对研究区的泥石流灾害进行风险分析。本数据可用于对中巴经济走廊泥石流灾害风险进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
本数据为泥石流易损性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的,栅格值表示易损区划:1表示低易损区,2表示较低易损区,3表示中易损区,4表示较高易损区,5表示高易损区。本数据可用于对中巴经济走廊重大泥石流灾害易损性进行评估,可以为泥石流风险性评估提供数据基础,了解重大泥石流对道路、房屋等基础设施损害程度的程度强弱关系,为当地政府部门防灾减灾、预测预报、乡村振兴等决策提供科学指导。
苏凤环
本数据为泥石流危险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的。泥石流样本数据是通过遥感解译、现场核对等方式获得的泥石流灾害详细情况数据,构建危险性评价体系,利用信息量法对研究区泥石流危险进行评价,然后采用自然断点法进行危险性区的划分。本数据可用于对重大泥石流灾害危险性进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
地表长波下行辐射(LWDR)作为地球能量平衡系统的关键分量,对生态和气候变化研究具有重要意义。随着遥感估算精度的不断提高和再分析资料时空分辨率与精度的提升,遥感和再分析数据融合将是进一步提高地表辐射等关键参量可信度和时空连续性的新途径。考虑到当前多源LWDR数据在时空分辨率和局部区域精度的差异,研究结合全球范围内的站点实测数据,将遥感观测数据(CERES)与再分析数据ERA5、GLDAS进行时空融合,研制了2000-2020年、覆盖全球、时空分辨率为1h/0.25°的高精度地表长波下行辐射数据集。新研制的LWDR数据集,与站点实测数据在陆地表面验证的相关系数 (R)、平均偏差误差 (BIAS) 和均方根误差 (RMSE) 分别为 0.97、-0.95 Wm-2 和 22.38 Wm-2 ;在海洋表面分别为 0.99、-0.88 Wm-2 和 10.96 Wm-2,特别指出的是,相比于已有数据,新数据集在中低纬度和复杂地形区表现出更好的精度和稳定性。
王天星, 王世遥
不同相态降水(降雪、雨夹雪和降雨)对地表水循环和能量收支产生不同性质影响。因此,对不同相态降水进行区分至关重要,特别是在气候变化背景下。基于Ding et al.(2014)提出的不同相态降水分离参数化方案和基于观测的逐日格点数据集(CN05.1),以湿球温度、相对湿度、地表气压和高程数据作为输入,我们生成了一套1961-2016年期间中国区域不同相态降水(降雪、雨夹雪和降雨)及其湿球温度阈值的逐日格点数据集,空间分辨率为0.25°。在此基础上,进一步计算了逐年降雪、雨夹雪和降雨总量。该数据可为冰冻圈科学、水文学、生态学和气候变化相关研究提供基础数据。
苏勃, 赵宏宇
采用红外相机调查法获取地栖大中型野生动物的出现数据。2021年布设红外相机262台,获得野生动物照片12391张,记录到大中型哺乳动物41种。小型兽类数据包含物种、多度、体重等性状数据、环境梯度数据等,可为理解环境梯度-物种多度-物种性状间的关联及垂直梯度哺乳动物群落构建的生态过程提供数据支撑。红外相机数据主要收集珍稀濒危野生动物的出现数据,可补充区域生物多样性本底,同时为生物多样性热点区及保护关键区识别提供科学依据。
李学友
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
为描述青藏高原重要畜禽种质资源遗传多样性分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2019-2022年期间在青海省海北藏族自治州刚察县采集2167份、1056份、516份当地藏羊和细毛羊组织样品,记录2074份、1548份产羔记录。本数据集包含3个组织样品信息表,2个产羔记录信息表。组织样品信息表记录品种、采集地、采集时间、样品类型等信息。产羔记录信息表记录品种、详细采样地、性别、出生日期、初生重等信息。信息表以excel表形式存储。
赵凯
为完成青藏高原及周边地区藏系绵羊资源调查,掌握藏系绵羊资源现状,2021-2022年度对青海、甘肃、青海、贵州、陕西、云南、新疆、四川开展藏系绵羊种质资源调查,采集1021份血液及组织样品。本数据集包含1个组织样品信息表,包含物种、品种、采集地、采集时间、样品类型等信息,以excel格式存储。拍摄个体照片230张,生境照61张,工作照22张,视频6个。照片以jpg格式存储,视频以mp4格式存储。对每个个体产生50000个基因型数据,共计1000个个体的SNP基因组分型数据,数据以“ped”和“map”格式存储。
李孟华
第二次青藏高原综合科学考察研究任务五专题三“高原微生物多样性保护和可持续利用”(2019QZKK0503)第一、二年度共计开展30余次野外科学考察,足迹覆盖了青藏高原大部分地区,包括对藏东南、羌塘高原、可可西里、喜马拉雅区等区域冰川(如枪勇冰川、唐古拉冰川、珠峰东绒布冰川、杰马央宗冰川、帕隆4号冰川等)、湖泊(昂仁金错、错果、托素湖等)、河流(雅鲁藏布江等)、溪流、土壤、真菌地衣、动物多圈层微生物的考察。该数据集包含本专题第一、二年度野外考察收集的生境照、工作照、科考影像等电子数据,共计6,471个照片视频(其中照片6,124张)。
刘勇勤
该数据集包含了2021年7月22日至2021年9月5日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度分别为(100.374°E, 38.855°N)、(100.371° E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设4个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并5天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 车涛, 屈永华, 徐自为, 谭俊磊, 李新
该数据集包含2021年5月2日至12月26日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 任志国, 李新
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国, 李新
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 张阳, 李新
森林是陆地上重要的生态系统,约占陆地总面的三分之一,在调节气候,为物种提供栖息地和维持全球生态系统平衡等方面发挥着重要作用。而树冠覆盖度的动态变化会影响森林生态系统的结构、组成和功能。利用长时间序列的Landsat数据,基于机器学习方法获得了1990-2020年尺度的30m空间分辨率的树冠覆盖度数据。利用年尺度的树冠覆盖度数据,生成了1990-2020年东喜马拉雅树冠覆盖度变化速率数据集。结果显示,该地区平均树冠覆盖度从40.67%(1990年)增加到43.43%(2020年),增加了2.76%,表明该地区森林在过去几十年里有所改善。
王春玲, 王建邦, 何卓昱, 冯敏
本数据为基于树木年轮资料重建的阿姆河上游支流贡特河Khorog水文站1495-2018年年平均径流量数据。中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题、水能与生态研究所合作开展树轮水文研究取得的数据,该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。 资料时段:1495年至2018年。 资料要素:平均径流量(m3/s) 站点位置:37°43″N, 71°30″E,2070m
尚华明
2021年仍采用样点法对岗日嘎布山沿海拔梯度的鸟类进行调查,按400米海拔跨度对考察区域分别设置海拔带,北坡从波密县通麦镇至嘎隆寺,由低到高设置了5个海拔带,南坡从墨脱县背崩乡解放大桥至嘎隆拉,由低到高设置了8个海拔带,获取岗日嘎布西北段南北坡鸟类多样性和分布数据,以期对理解这一区域鸟类多样性的形成和维持机制方面取得重大突破,进一步探讨气候变化对鸟类多样性的影响与适应策略、物种多样性对全球变化的响应与保护策略等关键科学问题。
王洁
数据内容:Nukus灌区2021年1月至2021年12月气压数据,单位为Pa。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:在气候变化背景下,可用于气象要素和地下水特征相关关系分析,也可以与其它水文气象数据相结合分析地下水时间以及空间分布变化特征。同时也可作为诸如极端气候、粮食减产以及人类健康等相关领域研究的基础数据。
刘铁
1) 数据内容:中亚大湖区数据库的2020年度更新数据库文件,包含2020年中亚大湖区生态站点中辐射总量的观测数据。 2) 数据来源及加工方法:数据来源于6个生态站点(站点号:1130、1131、1132、1133、1134、1137)的站点观测数据未经加工处理。 3) 数据质量描述:本数据为站点数据,时间分辨率为1分钟。数据质量控制过程包括2个步骤(1)内部一致性检查;(2)时间一致性检查。 4) 数据应用成果及前景:本数据为基本观测数据,为中亚大湖区数据库的重要年度补充,可为后续的气象、生态、水文、环境等研究领域提供数据支持、为项目研究的开展提供支撑。
刘铁
数据内容:Nukus灌区2021年1月至2021年12月气温数据,单位为0.1℃。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:在气候变化背景下,可用于气象要素和地下水特征相关关系分析,也可以与其它水文气象数据相结合分析地下水时间以及空间分布变化特征。同时也可作为诸如极端气候、粮食减产以及人类健康等相关领域研究的基础数据。
刘铁
数据内容:Nukus灌区2021年1月至2021年12月地下水水压数据,单位为Pa。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:用于分析地下水压力存在的基本类型以及分布态势,也可进一步查明和研究水文地质条件,特别是地下水的补给、径流、排泄条件,掌握地下水动态规律,为地下水资源评价、科学管理及环境地质问题的研究和防治提供科学依据。
刘铁
数据内容:Nukus灌区2021年1月至2021年12月地下水水温数据,单位为0.1℃。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:结合其他气象水文参数可进一步查明和研究水文地质条件,特别是地下水的补给、径流、排泄条件,掌握地下水动态规律,为地下水资源评价、科学管理及环境地质问题的研究和防治提供科学依据。
刘铁
数据内容:Nukus灌区2021年1月至2021年12月地下水埋深数据,即潜水面至地表的距离,单位为m。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:可用于统计分析灌区内地下水埋深随时间以及空间的变化特征,结合其他水文气象参数可分析气候变化和人类活动对地下水位的影响。同时也可用于分析地表水与地下水的交互过程。
刘铁
1) 数据内容:中亚大湖区数据库文件,包含2020-2021年中亚大湖区基础生态站点中总辐射要素的观测数据。 2) 数据来源及加工方法:数据来源于8个生态站点(站点号:1130、1131、1132、1133、1134、1135、1137、1138)的站点观测数据未经加工处理。 3) 数据质量描述:本数据为站点数据,时间分辨率为每1分钟。数据质量控制过程包括2个步骤(2)内部一致性检查;(2)时间一致性检查。 4) 数据应用成果及前景:本数据为基本观测数据,为中亚大湖区数据库的重要组成部分,可为后续的气象、生态、水文、环境等研究领域提供数据支持、为项目研究的开展提供支撑。
刘铁
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
青藏高原及其周边高山地区孕育了高度的植物多样性,其成分来源复杂,既是现代高山植物的分布中心,也与其它地区的植物有着千丝万缕的联系。生长在这一地区的植物具有适应高原环境的独特基因资源,但受限于技术的发展,对这一地区植物的基因资源挖掘和利用仍然处于起步阶段。通过对龙胆科植物卵萼花锚和大花花锚开展比较基因组学研究,可解析植物交配系统进化的基因组效应,发掘与自交相关的关键基因,探讨植物混合交配系统的维持机制。本次数据汇交的内容主要为:卵萼花锚和大花花锚的基因组原始数据,包含卵萼花锚和大花花锚的三代Pacbio测序数据以及卵萼花锚和大花花锚的二代illumina测序数据。
段元文
本数据在中国科学院纳木错多圈层综合观测研究站(2019)、中国科学院藏东南高山环境综合观测研究站(2021)观测获得,包括O3、NOx、HONO、H2O及HCHO等物种的地气交换通量或垂直梯度。时间范围为2019年4月28日到2019年7月10日(纳木错站)、2021年5月2日到2021年5月13日(藏东南站)。 数据共包含5个文件,文件1-4分别为2019年于纳木错站观测的通量数据及H2O垂直梯度、HONO垂直梯度、NO2垂直梯度。文件5为2021年于藏东南站观测的通量数据。 监测期间由于仪器状态问题,存在数据缺失。本数据应用前景广泛,可服务于如大气科学、气候学、和生态学等背景的研究生和科学家。
叶春翔
森林变化(包含森林损失和恢复)是受自然和人类活动影响的复杂生态过程,对全球物质循环和能量流动具有重要的影响。基于长时间序列树冠覆盖度(tree-canopy cover, TCC)数据,采用双时相类概率模型对森林变化进行检测,得到1986-2018年中国东北天然林保护工程区森林变化数据集(空间分辨率为30米,时间分辨率为1年)。使用分层随机采样方法在保护区范围内选取1000样点并进行目视解译,对森林变化提取结果进行精度评价,结果显示森林损失(Producer’s accuracy = 85.21%;User’s accuracy = 84.26%)和森林恢复(Producer’s accuracy = 87.74%;User’s accuracy = 88.31%)精度均较高,可以有效反映保护区森林变化状态。
王建邦, 何卓昱, 王春玲, 冯敏, 庞勇, 余涛, 李新
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件