1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、格尔木站、天山站、祁连山站、若尔盖站(共2个点,西北院和成都生物所)、玉龙雪山站、那曲站(含3个站点,青藏所、西北院和地理所)、海北站、三江源站、申扎站、拉萨站、青海湖站)2020年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和通量等数据) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。另外,该数据集是对中国高寒区地表环境与观测网络气象数据(2019)的更新。
朱立平
该数据集是根据24个CMIP6全球气候模式的historical(1951–2014年)、SSP2-4.5和SSP5-8.5(2015–2100年)试验数据,计算得出的在一带一路地区模拟性能较好的五个极端气温指数(最冷昼温TXn、最冷夜温TNn、夏日天数SU、热带夜数TR和霜冻日数FD)的未来集合预估数据。空间分辨率是1.875°×1.25°(经度×纬度),时间分辨率是年。该数据可以用于一带一路地区极端气温预估及风险防范。
钱诚
数据包含14块位于帕米尔-天山碰撞带内铁热克萨孜剖面白垩纪-上新世砂岩样品的碎屑锆石年代数据,沉积物中的碎屑锆石指示了沉积盆地的沉积过程与周缘造山带剥蚀过程间的耦合,是目前针对沉积盆地物源示踪的主要手段,同时也可以反应造山带的隆升过程。标准的提纯锆石样品过程包括碎样、震荡、磁选和重液分离,分离后的锆石经过制片与抛光后用于LA-ICP-MS测试,利用阴极发光照片选取不少于120个靶区测试样品铀铅同位素含量,样品通过Agilent 7500a Q-ICP-MS 和 a 193 nm COMPex Pro laser测试,并在DensityPlotter程序中进行年代的统计与处理。通过铁热克萨孜剖面的铀铅年代数据,得到了剖面内白垩纪-上新世地层的年代,铁热克萨孜地处狭窄的帕米尔和天山碰撞带,中生代-新生代沉积物源分别来自帕米尔和天山的剥蚀,给物源示踪分析提供了条件。通过此项数据,我们可以重建帕米尔北部与西南天山白垩系-上新世的构造演化过程。
付碧宏
通过对西城驿遗址、金蝉口遗址、山那树扎遗址、江西坟遗址、宗日遗址和邦嘎遗址等进行考古调查和发掘,获取了各遗址经纬度、高程、文化属性、文化遗物等基本信息;并且,对遗址发掘过程中的石制品、动植物遗存以及沉积物样品进行科学收集、鉴定和实验室分析,得到了一批遗址碳十四年代数据、孢粉数据、动物遗存骨骼单元分布鉴定数据、植物遗存鉴定数据以及相关同位素数据;同时,对青藏高原及其周边地区相关动植物遗存及同位素进行了整理。基于自然地理因子和不同时期遗址点,在最低成本的控制下实现节点间累积联结的方法,使用GIS(R语言)工具进行空间数值计算,将其结果作为史前时期(新石器—青铜时期)的交流路线。发现路线的形 态由新石器时期的东北—东部—东南—西南边缘呈月牙形环绕发展至青铜时期的由边缘延伸 至腹地呈网络化发展的趋势,这是由高原边缘的交流逐步演化成边缘—腹地的交流、并不断强化的表现。且通过采集青藏高原东部高寒草甸区共49个放牧家畜粪样品(牦牛粪 样品30个、马粪样品11个、羊粪样品8个),并在区域植被调查的基础上,对粪样品开展了花粉分析。该数据集为研究青藏高原新石器时代-青铜先民的活动历史和生业模式提供了数据支撑。
董广辉, 马敏敏, 侯光良, 杨晓燕
本数据集内容主要包括东昆仑造山带沟里金矿床(果洛龙洼和阿斯哈金矿床)黄铁矿原位微量元素(Table 1)以及原位硫同位素数据(Table 2)。黄铁矿的微量元素分析一部分在中国科学院地球化学研究所矿床地球化学国家重点实验室,采用配备相干Compex Pro 193 nm ArF准分子激光器的ASI分辨率-LR-S155激光微探针以及安捷伦7700x电感耦合等离子体质谱仪完成测试。另一部分在武汉上谱分析科技有限责任公司利用COMPexPro 102 ArF 193 nm准分子激光器搭载Agilent 7700e电感耦合等离子体质谱仪完成测试。微量元素含量处理中采用玻璃标准物质NIST 610,NIST 612进行多外标无内标校正(Liu et al., 2008),USGS的硫化物标准物质MASS-1作为监控标样验证校正方法的可靠性。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008)完成。黄铁矿的硫同位元素分析一部分在在中国科学院地球化学研究所矿床地球化学国家重点实验室,采用搭载了155arf-193nm激光烧蚀系统的Nu-Plasma III型多采集器(MC)-ICP-MS完成。另一部分在武汉上谱分析科技有限责任公司利用Geolas HD激光剥蚀Neptune Plus多接收杯电感耦合等离子体质谱(LA-MC-ICP-MS)完成。硫同位素质量分馏采用SSB方法校正。磁黄铁矿参考物质SP-Po-01(δ34Sv-CDT=1.4±0.4),黄铁矿参考物质SP-Py-01(δ34Sv-CDT=2.0±0.5‰)作为质量监控样品被重复分析,验证实验方法的准确性。该套数据已经发表在国际权威期刊《Ore Geology Reviews》(Li X.H., Fan H.R. *, Liang G.Z., Zhu R.X., Yang K.F., Steele-MacInnis M., Hu H.L. (2021). Texture, trace elements, sulfur and He-Ar isotopes in pyrite: Implication for ore-forming processes and fluid source of the Guoluolongwa gold deposit,East Kunlun metallogenic belt. Ore Geology Reviews 136)和《Journal of Asian Earth Sciences》上(Liang G.Z., Yang K.F. *, Sun W.Q., Fan H.R., Li X.H., Lan T.G., Hu H.L., Chen Y.W. (2021). Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun Orogenic Belt, western China. Journal of Asian Earth Sciences 220.)。主要成果如下:(1)通过对黄铁矿结构和地球化学综合研究,探讨了果洛龙洼金矿床和阿斯哈金矿床成矿流体性质和来源及多阶段成矿过程。区分出具有不同结构、微量元素含量和硫同位素的四种类型的黄铁矿,划分了四个成矿阶段;(2)果洛龙洼金矿床热液黄铁矿的S同位素特征和低Co-Ni含量,以及黄铁矿中流体包裹体的He-Ar同位素特征均指示,成矿流体主要来源于壳源长英质岩浆发生多期流体出溶,与H-O同位素分析结果以及东昆仑造山带东部出露大量的花岗岩一致;(3)阿斯哈金矿黄铁矿的硫同位素特征和微量元素特征指示,成矿流体均来源于近同期的花岗斑岩岩浆热液。成矿阶段流体在上升过程中,都混染了基性火山岩和沉积岩围岩,且混入量呈递增趋势。以上数据系统阐释了沟里金矿床的成矿流体性质特征和来源,精细刻画了多阶段成矿过程,明确了成矿机制,并构建了成矿模式图,对于探索东昆仑造山带金资源的勘探与开采具有重要意义。此外,该套数据可为东昆仑造山带其他金矿区成矿机制研究提供对比参考,对于系统探究东昆仑造山带金矿床的形成具有重大科学价值。
李兴辉, 梁改忠
通过在色林错流域和大通河的调查和苏热遗址的发掘,获取了11个旧石器-中石器时代遗址的经纬度、分布范围、地形特征、海拔高程、文化属性、文化遗物等基本信息;并且,对遗址发掘过程中的人工遗物、动植物遗存、土壤样品等进行了科学收集提取和实验室分析,得到了一批放射性碳测年数据、石制品测量数据和环境测试数据。该数据集丰富了青藏高原旧石器时代遗址的信息,为构建时空框架和文化序列提供了重要基础,为进一步研究青藏高原腹地的史前人类活动和生业模式提供了数据支撑。
张晓凌, 张东菊
"基于青藏高原不同的退化过程,分别将1990和2015的冻土退化、植被退化、盐碱化、沙漠化、土壤侵蚀过程作为主要的退化类型,选择对高原土地退化影响显著的退化过程进行叠加,评估从1990到2015时期内青藏高原土地退化变化趋势。土地退化类型分类:0 - No degradation; 1 - Salinization; 10 - Permafrost degradation; 11 - Salinization and permafrost degradation; 100 - Soil erosion; 101 - Soil erosion and salinization; 110 - Soi erosion and permafrost degradation; 111 - Soi erosion, permafrost degradation and salinization; 1000 - Desertification; 1001 - Desertification and salinization; 1010 - Desertification and permafrost degradation; 1011 - Desertification, permafrost degradation and salinization; 1100 - Desertification and soil erosion; 1101 - Desertification, soil erosion and salinization; 1110 - Desertification, soil erosion and permafrost degradation; 1111 - Desertification, soil erosion, permafrost degradation and salinization; 10000 - Vegetation degradation; 10001 - Vegetation degradation and salinization; 10010 - Vegetation degradation and permafrost degradation; 10011 - Vegetation degradation, permafrost degradation and salinization; 10100 - Vegetation degradation and soil erosion; 10101 - Vegetation degradation, soil erosion and salinization; 10110 - Vegetation degradation, soil erosion and permafrost degradation; 10111 - Vegetation degradation, soil erosion, permafrost degradation and salinization; 11000 - Vegetation degradation and desertification; 11001 - Vegetation degradation, desertification and salinization; 11010 - Vegetation degradation, desertification and permafrost degradation; 11011 - Vegetation degradation, desertification, permafrost degradation and salinization; 11100 - Vegetation degradation, desertification and soil erosion; 11101 - Vegetation degradation, desertification, soil erosion and salinization; 11110 - Vegetation degradation, desertification, soil erosion and permafrost degradation; 11111 - Vegetation degradation, desertification, soil erosion, permafrost degradation and salinization;"
赵广举
兴都库什山脉(Hindu kush Mountains)是亚洲中部的高大山脉。平均海拔约5000米,最高峰蒂里奇米尔峰海拔7690米,是发源于青藏高原西南部的印度河和发源于帕米尔高原的阿姆河的分水岭。研究该区域人群的遗传结构,有助于深入理解该地区人群的扩散历史和适应高原环境的遗传基础。在本研究中,我们对分布于兴都库什山脉的5个群体的213个个体进行了母系遗传结构的研究。采用线粒体基因组捕获建库和二代测序(Illumina HiSeq X Ten platform)的方法,获得了213个个体的线粒体全基因组序列(平均深度>1000x)。基于系统发育思想,我们对这些数据进行质量控制,确保没有样本污染等质量问题。以修订后的剑桥标准序列参考,进行突变位点的输出。根据世界范围内的人群的线粒体DNA系统发育树(PhyloTree.org),对每个样本进行单倍型类群划分。综合以往发表的现代人群和古代样本的mtDNA数据,系统研究了该地区人群的起源和扩散历史。结果表明,该地区的印欧语系人群的主要母系遗传组分来源于欧亚西部。单倍群W3a1a和J1b1a1等类群可能与印欧语系人群的迁徙有关,说明印欧语系向南亚的扩散可能不仅仅是简单的文化扩张,也伴随着一部分的人群迁徙。此外,研究还表明,巴基斯坦北部可能在印欧语系向南亚的扩散中起着重要的通道作用。
孔庆鹏
泛第三极土壤可蚀性因子(K)数据集,基于国际土壤信息参比中心(International Soil Reference and Information Centre, ISRIC)网站(https://files.isric.org/soilgrids/latest/data/)下载的7.5弧秒分辨率土壤属性数据计算,所用数据包括土壤黏粒含量(%)、粉粒含量(%)、砂粒含量(%)、土壤有机碳含量(g/kg)、土壤质地类型。利用Wischmeier(1978)在USLE手册第二版中提出的土壤可蚀性因子算法、本项目研发的土壤可蚀性因子计算工具(K_Tool),计算得到与输入数据分辨率(30弧秒,尺度地区约1000m)相同分辨率的土壤可蚀性因子图。泛第三极土壤可蚀性因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时也是分析泛第三极土壤特征的基础数据。
杨勤科
泛第三极(LS)数据集,基于公开的1弧秒分辨率SRTM数字高程数据(Shuttle Radar Topography Mission, SRTM;http://srtm.csi.cgiar.org),经过去接边、去除伪条纹等和滤波除噪等预处理,利用CSLE模型中的坡度坡长因子算法和本项目研发的坡度坡长因子计算工具(LS_Tool),计算得到30弧秒分辨率坡度坡长因子图。泛第三极65国坡度坡长因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时分析泛第三极265国侵蚀地形特征(如高程、坡度、坡度等宏观分布和微观格局)的基础数据,对于该地区地貌特征、地质灾害特征的分析,也具有参考价值。
杨勤科
本数据集包含了2004-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.0.1数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
本数据是锆石的U-Pb年代学和微量元素数据,样品采自阿尔金吐格曼铍锂矿区马蹄tγρ15-4中段中部,岩石类型为电气石钠长石石英伟晶岩,样品编号18BARJ02-5。锆石分选在河北区域地质矿产调查研究所实验室完成; 锆石制靶、阴极发光图像及锆石U-Pb 同位素定年分析在武汉上谱分析科技有限责任公司完成。利用多接收电感耦合等离子体质谱仪( LA-ICP-MS) 对锆石Upb 同位素进行分析。数据置信度95%,数据可信度高。样品锆石为岩浆锆石在伟晶岩热液阶段蜕晶化或重结晶的锆石,可以约束吐格曼铍锂矿花岗伟晶岩形成于中奥陶世晚期( 460Ma) 南阿尔金洋闭合后阿中地块与柴达木地块碰撞过程的后碰撞阶。
徐兴旺
本数据包括淡色花岗岩及伟晶岩等全岩主微量地球化学数据,金绿宝石主量和电气石的主微量数据,锆石年代学同位素数据,以及石英同位素和微量数据。样品采集自阿尔金吐格曼塔石萨依岩体。全岩主量地化数据通过本所XRF测得,全岩微量数据通过武汉上谱公司的激光质谱获得,电气石的主微量分别由电子探针和激光质谱获得,石英的微量和氧同位素分别由激光质谱和sims获得。全岩数据得到淡色花岗岩与伟晶岩的之间的演化关系,锆石约束花岗岩和伟晶岩的形成与480-490Ma,而电气石和石英微量同位素数据则可以判断变质过程和岩浆过程中稀有元素的富集情况,最终推断变质过程对锂铍富集没有贡献。
洪涛
青藏高原北部新生代构造剥露过程的时间约束能为高原隆升过程及该区构造-气候-侵蚀相互作用过程研究提供依据。磷灰石裂变径迹热年代学的封闭温度较低(~100℃),能够记录地壳浅部发生的剥露过程。在柴达木盆地北缘红柳沟剖面新生代路乐河组-狮子沟组地层采集了26个沉积岩屑样品,并在中科院西北生态环境资源研究院以外探测器法进行裂变径迹测年。这些样品获得的磷灰石裂变径迹中心年龄在36.4 ± 2.0 Ma到78.0 ± 2.8 Ma。多数样品未通过卡方检验,指示多个冷却年龄岩体混合的碎屑源区。使用二项式拟合法分解每个样品的混合单颗粒年龄,获得55个年龄组分,拟合组分年龄在21.2 ± 2.9 Ma到102.8 ± 9.0 Ma。结合封闭径迹长度和拟合组分年龄,认为剖面2500m以上样品未发生沉积后埋藏退火作用,2500m以下样品沉积后裂变径迹部分退火。未退火裂变径迹年龄在~60-50 Ma和40-36 Ma分别表现为“静态峰”,指示碎屑物源区祁连山在这两时期分别发生显著岩石剥露。本研究揭示青藏高原北缘新生代构造变形开始于早新生代,与印度-欧亚板块碰撞时间几乎同步,指示祁连山在早新生代即是青藏高原的北部边界。
宋春晖, 何鹏举
达索流域是达索河的汇水区,位于喜马拉雅山中段北坡,中国西藏自治区日喀则市聂拉木县境内。达索河发源于希夏邦马峰达索普冰川,它与泽当河汇流后形成那朵热河,是朋曲上游主要支流之一。达索流域长约25 km,最宽处约8 km,总面积为88.64 km², 周长为73.43 km。它的地理位置为28°20'53"N-28°35'17"N,85°42'29″E-85°48'50″E,海拔高度为5006-8027 m,75%以上的区域海拔超过5500 m,平均海拔为5909 m。该数据集基于1:10万地形图进行勾绘,同时采用12.5 m数字高程模型和Google Earth影像对其进行初步订正,最后根据野外考察进行验证。数据集由17个数据文件组成,以.kmz和.shp数据格式存储,数据量296 KB(压缩为2个文件,133 KB)。
张镱锂, 谷昌军
本数据集包含了2012-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.1数据,是v2.0.1错误修复后的新版本数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
蚀变矿物是热液矿床中流体与围岩发生反应后的产物,蚀变矿物的种类、成分及空间分布既是鉴定矿床成因及类型、判断深部成矿潜力的有用标志,同时也是用来反演流体演化及矿质沉淀过程的重要媒介。数据来源于西藏班公湖-怒江成矿带西段改则县荣那矿床(斑岩-高硫型浅成低温热液套合矿床),本数据集包含了该矿床中一些典型蚀变矿物的主量元素成分,先通过镜下及XRD分析鉴定蚀变矿物种类,再通过电子探针获得其定量的主量成分数据。数据质量良好,结果可信。数据可用于类似矿床的对比,完善矿床模型。
张夏楠, 李光明
新生代青藏高原的隆起被认为是亚洲季风形成、全球风化作用增强、大气二氧化碳浓度下降并导致全球变冷的核心驱动力之一,然而其驱动过程和机制存在争议,更未得到青藏高原自身化学风化过程及环境变化记录的清晰印证。本数据集为青藏高原可可西里盆地晚白垩世-始新世发育的厚4500米的风火山群的主量元素数据。元素测定在中国科学院地质与地球物理研究所利用X射线荧光光谱仪(XRF-1500)完成。我们通过重建可可西里盆地古近纪化学风化序列,发现区域大陆化学风化强度与全球温度变化相关,为解释高原大陆化学风化过程与高原隆升和全球变化的内在动力学联系提供了新的数据支撑。
靳春胜
该数据集为项目组在西藏当雄县羊八井地热田采集的电性源瞬变电磁法原始观测数据,数据格式为excel,共包含6个文件。观测仪器为加拿大凤凰公司的V8多功能电法工作站,场值为垂直感应电动势(dBz/dt)。每个excel文件中包含的信息包括:测点坐标(大地投影坐标,北京54坐标系)、发射源坐标、地形控制点、观测时间道、感应电动势、误差棒。通过对该数据集的预处理及反演,可获羊八井地热田深部2千米深度范围的电性结构,为调查区内控热、导热构造的位置及规模提供依据。
陈卫营
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件