根据不同源的冰川区的相关地形数据的特点,利用所建立的冰川高程提取方法进行冰川区高程数据的提取。技术路线主要包括:(1)冰川高程变化提取:基于Matlab的数字图像处理平台,开发一套集KH-9畸变光标精确识别、影像畸变校正、影像无缝拼接等功能的KH-9影像预处理程序,实现KH-9影像的自动化预处理,并在此基础上对预处理后的KH-9立体像对提取研究区冰川1970年的DEM数据,然后结合SRTM数据,利用多源高程差值校正方法,通过Matlab编程实现DEMs的配准和高程相关偏差改正,最后计算冰川1970—2000年间的冰川高程变化;(2)基于ICEsat数据进行冰川高程变化提取:首先利用NSIDC提供的IDL Readers tool 工具将GLA14二进制格式数据转换为ASCII 文本数据,然后通过Matlab编程对其进行饱和改正和坡度、云层误差剔除后处理,并利用多源高程差值校正方法,实现ICEsat和SRTM数据的配准和高程相关偏差改正,最后利用年变化趋势回归拟合方法来获取冰川2003—2009年间的高程变化;(3) 根据两种不同类型的冰川地形数据进行冰川高程变化的提取。
周建民
根据不同源的冰川区的相关地形数据的特点,利用所建立的冰川高程提取方法进行冰川区高程数据的提取。技术路线主要包括:(1)冰川高程变化提取:基于Matlab的数字图像处理平台,开发一套集KH-9畸变光标精确识别、影像畸变校正、影像无缝拼接等功能的KH-9影像预处理程序,实现KH-9影像的自动化预处理,并在此基础上对预处理后的KH-9立体像对提取研究区冰川1970年的DEM数据,然后结合SRTM数据,利用多源高程差值校正方法,通过Matlab编程实现DEMs的配准和高程相关偏差改正,最后计算冰川1970—2000年间的冰川高程变化;(2)基于ICEsat数据进行冰川高程变化提取:首先利用NSIDC提供的IDL Readers tool 工具将GLA14二进制格式数据转换为ASCII 文本数据,然后通过Matlab编程对其进行饱和改正和坡度、云层误差剔除后处理,并利用多源高程差值校正方法,实现ICEsat和SRTM数据的配准和高程相关偏差改正,最后利用年变化趋势回归拟合方法来获取冰川2003—2009年间的高程变化;(3) 根据两种不同类型的冰川地形数据进行冰川高程变化的提取。
周建民
生物圈对大气的反馈是全球变化研究的核心内容之一,在大气CO2浓度上升的情况下,陆地生态系统的行为是预测这种反馈效应的主要不确定性因素。CO2浓度升高(eCO2)可以通过增加羧化作用和抑制光呼吸速率直接刺激植物生长和生态系统C的吸收。通过CO2施肥效应(CFE)对光合作用和碳固存的影响,陆地生态系统可以缓冲大气CO2浓度的激增,进而减缓气候变化。为研究CO2加富对植被生产力的影响,在青藏高原北部那曲草原站(31°38′31″N, 92°00′54″E,海拔4600m)开展了CO2加富试验。试验采用分区设计,CO2为主处理因子,N为次处理因子;总共四个实验处理,跨越两个CO2浓度水平[环境CO2 (aCO2),升高CO2(eCO2): +100ppm]。考虑到研究区域的植被高度低和多风的天气,采用八角形开顶室(OTCs)来控制二氧化碳浓度,而不是自由FACE系统。OTC设计高2.5米,每边长1.5米,每个OTC占地7.7平方米。
张扬建
该数据集是那曲通量站点(31.64°N 92.01°E, 4598 m a.s.l.)的每日涡度相关通量观测数据,包括生态系统净生态系统生产力(NEP)、总初级生产力(GPP)和生态系统呼吸(ER)数据。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
该数据集是那曲通量站点(31.64°N 92.01°E, 4598 m a.s.l.)的每日涡度相关通量观测数据,包括净生态系统生产力(NEP)、总初级生产力(GPP)、生态系统呼吸(ER)、蒸散、潜热、感热、空气温度、相对湿度、风速、土壤温度、土壤含水量等数据。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建
该数据集为全球呼吸数据,包含自养呼吸(ra)和异养呼吸(rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中TaiESM1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为0.9°x1.25°。模拟数据详细说明可见链接https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.AS-RCEC.TaiESM1.historical。
美国气候模式诊断和对比计划委员会
CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集包含了CMIP6中情景模式比较子计划(ScenarioMIP)的4种SSP情景组合。(1) SSP126:在SSP1(低强迫情景)基础上对RCP2.6情景的升级(辐射强迫在2100年达到2.6W/m2)。(2)SSP245:在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3)SSP370:在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4)SSP585:在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。 利用GRU数据对原始CMIP数据进行后处理偏差校正得到2046-2065年月尺度降水(pr)和气温(tas)预估后处理数据集, 参考期为1985-2014年。
叶爱中
1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。
王世金
数据包括青藏高原内流冰川1975-2000表面高程空间变化 (100 m)、内流区各子流域1975-2020冰川的平均高程变化值以及流域边界和分区三个文件。1975-2000年冰川表面高程变化,基于32对KH-9数据和NASADEM获取,其中木孜塔格和普若岗日地区的结果分别来自Zhou et al. (2018)和Bhattacharya et al.(2021)。1995-2020期间,各流域每5年的平均高程变化结果,根据Hugonnet et al.(2021)公布的数据进行计算,这里假设1995-2000的冰川厚度变化情况与2000-2005类似。受KH-9数据质量限制及内流区冰川特性的影响,空值区域较多,建议结合分区,首先计算各个高程带的变化结果,再映射到每个子流域。
陈文锋, 张国庆
本数据集为基于PEW模型的全球地表蒸散发产品, PEW模型是基于等比例假设建立的水-能平衡蒸散发模型(Proportionality hypothesis-based surface Energy-Water balance model),其原理是在Priestley Taylor(PT)蒸散发算法的基础上,耦合基于等比例假设构造的水热平衡框架。PEW模型可以同时考虑水量平衡约束和能量收支过程的影响,使得PEW模型模拟精度相较于以往的模型有一定程度的提升。PEW的输入数据包括ERA5-land数据集气象和土壤含水量变化等数据,本数据集时间跨度为1982年-2018年,时间分辨率为逐月,空间分辨率为0.1°。本数据集可为研究长时间尺度水循环和气候变化提供基础。
傅健宇, 王卫光
青藏高原作为强大的热源,影响到亚洲季风的爆发与进退,西风带和季风带的相互作用。为了研究高原热力作用的变化及其对周边地区气候的影响,需要高原热源相关的基础数据。 本数据集由再分析资料计算得到得青藏高原及其周边地区逐月热源基础数据构成,变量包括青藏高原及周边地区大气热源、潜热通量、感热通量等,其水平范围覆盖为40°E-180°,20°S-80°N。空间分辨率为2.5°x2.5°,主要包括ERA5和NCEP/NCAR两种再分析资料数据。
李清泉
基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。
陆平, 郝彤, 李荣兴
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
数据内容:国民经济工业增加值(月度)(2010-2021) 数据来源及加工方法:从世界银行官方网站、新浪网获取2010-2021年第三极(中国地区)工业经济原始数据,通过数据整理、筛选及清洗得到2010-2021年(中国地区)工业经济数据集,数据起始时间为2010年至2021年,Microsoft Excel(xls)格式。 数据质量描述:优良 数据应用成果及前景:作为社会工业经济数据提供有效参考
傅文学
黑河流域社会经济资源循环网络模拟数据,该数据集包括黑河流域甘州、肃南、民乐、临泽、高台、山丹、肃州、金塔、嘉峪关、额济纳11个市县间的隐含水资源和土地资源流量。数据时间范围:2012年。其中:表格1(Shee1)包括多区域间虚拟水资源与虚拟土地资源转移量。表格2(Sheet2)包括各区域分部门虚拟水资源出口量、与各区域分部门虚拟水资源进口量。表格3(sheet3)包括各区域分部门虚拟土地资源出口量、与各区域分部门虚拟土地资源进口量。 基于黑河流域11市县投入产出表,调研各个经济部门水资源、土地资源的消耗、损失与流转,构建水-土资源耦合核算报表,基于投入产出分析方法,计算各个区域分部门虚拟水资源、虚拟土地资源流转情况。各区域各部门耗水与土地利用数据来自官方统计年鉴数据。
陈彬
冻融指数是气候变化的一个重要敏感指示器,也被广泛应用于冻土变化研究中。研究全球范围内冻融指数的空间分布特征与时间变化趋势,可为全球冻土环境评估、工程建设以及应对气候变化提供依据。该数据集基于1973—2021年覆盖全球陆地且超过14 000个站点的逐日气温观测数据,计算空气冻结指数(FI)和空气融化指数(TI)。冻结/融化指数,是冻结/融化期内日平均气温低于/高于 0 ℃的温度累计值。考虑到指数计算要覆盖整个冻结/融化期,并保证计算时段的连续,北半球以该年7月1日至次年6月30日为一个冻结期,以该年1月1日至12月30日为一个融化期,南半球冻结/融化时段相反。对于有缺测年份的站点未进行填补处理,一方面避免了插值对结果带来的不确定性误差,二是尽可能保留了数据的真实性与准确性。开展全球冻融指数研究,可以有效全面了解近地表热状态,并可以为探究冻融状态变化提供重要的支撑。
彭小清, 陈聪, 牟翠翠
基准情景、生态保护情景和经济快速发展情景下黑河上、中、下游土地利用与覆被模拟结果,时间范围:2015-2030,空间分辨率:1km。upper黑河上游地区土地利用数据模拟,空间分辨率是1km;Middle黑河中游地区土地利用数据模拟,空间分辨率是1km;Down黑河下游地区土地利用数据模拟,空间分辨率是1km。Basic 基准情景下土地利用数据模拟;Ecology 生态保护情景下土地利用数据模拟,主要是侧重林草地保护,控制经济发展速度;Economic经济快速发展情景下土地利用数据模拟,主要是注重经济快速发展,建设用地快速扩张,林草地保护被忽视。 数据基于历史土地利用数据利用DLS模型模拟获得。
吴锋
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件