内容包括: 牌楼钼金多金属矿床地质图,牌楼钼金多金属矿床7号勘探线剖面图,马市铜矿地质图,马市铜矿4号勘探线剖面图,马头铜钼矿床地质图。 牌楼矿床有10个金矿体和7个钼矿带。单个金矿体的长度和厚度为数十米和0.28–4.00米。牌楼矿床的金品位为1.19–22.0 g/t。钼矿体长400~600m,厚1.50~6.50m,主要赋存于与围岩接触带附近的花岗闪长岩(斑岩)和角岩中。钼的平均品位为0.04–0.13 wt%。牌楼矿床矿石主要为黄铁矿、辉钼矿和浸染矿。矿石矿物主要由辉钼矿、黄铁矿、辉锑矿及少量磁黄铁矿组成。脉石矿物主要为石英、长石、绢云母和绿泥石。 马石地区铜矿床有几十个铜矿体,铜品位为0.21–0.34 wt%。在花岗闪长岩(斑岩)和隐爆角砾岩中发现了长度和厚度分别为330-600m和20-50m的铜矿体。马石矿床蚀变类型主要为硅化、绢云母化和黄铁矿化。马头钼铜矿床为中型斑岩型矿床,钼储量6万t,铜资源量>10万t。马头矿床蚀变类型主要为硅化、绢云母化和钾长石化。马头矿床矿石主要为黄铜矿、辉钼矿石英脉型矿石和浸染型矿石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以jpg形式储存。
谢建成
本数据为福建省紫金山矿田罗卜岭斑岩铜钼矿含矿岩体和围岩中的锆石原位微量元素、Hf同位素和U-Pb测年数据以及磷灰石原位主量(包括F,Cl)、微量元素地球化学数据。样品岩性包括黑云母花岗闪长斑岩(LBL20-01)、花岗闪长斑岩(LBL20-02,LBL22-02)、似斑状花岗闪长岩(中寮岩体,LBL22-03),花岗闪长岩(四坊岩体,SF09-05)。锆石原位Lu-Hf同位素数据、U-Pb同位素测年数据及微量元素数据由LA-ICP-MS分析获得,磷灰石的主量(包括F,Cl)、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以进一步研究紫金山斑岩-浅成热液成矿系统的成因、构造背景及演化过程。
李聪颖
在国家重点研发计划“燕山期重大地质事件的深部过程与资源效应”的课题“关键廊带的综合地球物理探测与深部过程”资助下,2017和2019年,我们在东海陆架区完成两条OBS广角地震剖面。利用获得的OBS数据,采用层析成像正、反演方法,得到东海陆架区深部地壳结构。速度结构揭示地壳厚度从浙闽造山带的30km减薄到陆架盆地的15km,对应的地壳速度从4.40-7.15 km/s变化到4.30-6.90 km/s。结合以往的研究,浙闽造山带存在高磁异常,我们认为浙闽造山带和陆架盆地的地壳结构存在较大差异,东海可能不是华南陆缘的延伸;在浙闽造山带和陆架盆地的交界处存在宽约50km,速度高达7.15km/s的高速异常。我们推测该异常为中生代缝合带,高速异常与古太平洋板块俯冲后撤时,板块撕裂产生的岩浆活动有关。
丁巍伟, 卫小冬
本数据集包括2013年全国盐田分布数据。这些数据通过Landsat卫星遥感影像人工解译提取盐湖图斑,矢量化处理后形成。主要包含盐田名称(YT)、盐性编号(YXBH)、所在省份(SF)等信息。数据集共有39条记录,56.00KB。数据集文件名及数据表标志名对应如下:盐田名称 YT、盐性编号 YXBH、所在省份 SF。采用WGS-84坐标系为空间基准,精度为1:30万,粒度以县级行政区为最小单元,以省级行政区为最大单元。
陈亮, 王建萍
本数据为华南湘东南地区上堡黄铁矿-萤石矿床中的黄铁矿的Re-Os同位素年代学数据,Os同位素数据是通过热电离质谱仪分析获得。Re含量通过电感耦合等离子体质谱仪分析获得。通过获得的数据,可以限定华南湘东南地区上堡黄铁矿-萤石矿床的形成时代。一个样品中六个自形黄铁矿颗粒的等时年龄为279± 12 Ma,初始187Os/188Os比值为0.39± 0.71,Re和Os浓度分别为0.12-63.5 ppb和2.14-185 ppt。早二叠世的年龄与黄铁矿的寄主地层的年龄一致。另一个样品的5个自形黄铁矿颗粒的等时年龄为75.2± 4.3 Ma,初始187Os/188Os比值0.141± 0.030,Re和Os浓度分别为0.15-0.43 ppb和1.0-39.9 ppt。如果排除最高的187Re/188Os和187Os/188Os的一个黄铁矿颗粒,其他四个黄铁矿颗粒的等时年龄为85± 13Ma。这与上堡花岗岩的锆石U-Pb年龄(80.1± 0.3 Ma)一致。
黄橙橙
此数据包括三个示意图:(a)中国构造示意图(b) 长江中下游成矿带晚中生代主要岩浆岩及相关矿床分布地质示意图(c) 中国东部池州矿区地质示意图。 图中信息包括地区断层分布状态,研究区域位置,斑岩型层控铜金钼矿床,矽卡岩型铁铜矿床,磁铁矿磷灰石矿床,A型花岗岩带,白垩纪火山岩和次火山岩,晚中生代花岗闪长岩及花岗岩。通过对图中分布在东六马鞍山断裂带和高滩断裂带的铜钼多金属矿床进行系统的地质年代学和地球化学分析,对制约池州地区铜钼多金属矿床的形成和花岗闪长岩(斑岩)的成因进行了深入研究。 以上数据以发表于SCI期刊,数据真实可靠。数据以jpg形式储存。
谢建成
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
本数据集包含尼玛县北部下别地区花岗岩和其中包含的暗色包体的全岩主量、微量元素和Sr-Nd同位素、锆石U-Pb、Hf-O同位素数据和矿物主量元素化学数据。岩石主量元素数据通过X射线荧光光谱分析获得,微量元素数据使用电感耦合等离子质谱仪获得,Sr-Nd同位素数据由多接收电感耦合等离子质谱仪测试获得,矿物主量元素化学数据是由电子探针分析测得,锆石U-Pb和Hf同位素数据由激光剥蚀联合电感耦合等离子质谱仪获得,锆石O同位素数据由二次离子质谱仪分析而得。通过所获得的这些数据,深入认识了这些花岗岩和包体的成因。
YANG Zong-Yong, 王强
该数据集包含了:广州市帽峰山二云母花岗岩样品的岩石岩性信息、样品年代学数据、样品全岩主微量元素和Sr-Nd同位素数据和样品单矿物锆石原位Hf-O同位素数据。岩石样品的年代学数据是通过对岩石单矿物分选的岩浆锆石进行二次离子体质谱(SIMS)测定的,测试过程中Qinghu标准锆石作为监控样品,监控整个分析测试过程的可靠性。主量元素通过将岩石粉末熔融成可以上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、GBW-123、GSR-1、GSR-2和GSR-3的测量结果分析精度优于2%。微量元素通过在Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS标准物质(BHVO-2、GSR-1、GSR-2、GSR-3、SARM-4、AVG-2和W-2a)进行测定,作为外部测试标样校正未知样品的元素含量,分析测试精度优于3%。岩石Sr-Nd同位素通过对粉末进行酸性溶解,对所获得的溶液,在Neptune型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用NBS987(87Sr/86Sr = 0.71025)和Shin Etsu JNdi-1(143Nd/144Nd=0.512115)标准物质进行监控。锆石原位Hf同位素的测试是通过激光和MC-ICP-MS联用来进行。测试过程中Mud Tank和GJ-1标准锆石作为监控样品,监控整个分析测试过程的可靠性。锆石原位O同位素数据是通过对岩浆锆石进行二次离子质谱(SIMS)分析所获得的。测试过程中,Penglai标样的多次测定结果的外部精度优于0.30%(2σ)。所获得的数据为华南晚中生代地壳再造机制和过程提供了证据。研究成果发表于SCI期刊Mineralogy and Petrology上。
刘潇
该数据集包含了:广州市火炉山和龙眼洞二云母花岗岩、火炉山闪长岩和火炉山正长斑岩样品的岩石岩性信息、样品年代学数据、样品全岩主微量元素和Sr-Nd同位素数据和样品单矿物锆石原位Hf-O同位素数据。岩石样品的年代学数据是通过对岩石单矿物分选的岩浆锆石进行二次离子体质谱(SIMS)测定的,测试过程中Qinghu标准锆石作为监控样品,监控整个分析测试过程的可靠性。主量元素通过将岩石粉末熔融成可以上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、GBW-123、GSR-1、GSR-2和GSR-3的测量结果分析精度优于2%。微量元素通过在Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS标准物质(BHVO-2、GSR-1、GSR-2、GSR-3、SARM-4、AVG-2和W-2a)进行测定,作为外部测试标样校正未知样品的元素含量,分析测试精度优于3%。岩石Sr-Nd同位素通过对粉末进行酸性溶解,对所获得的溶液,在Neptune型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用NBS987(87Sr/86Sr = 0.71025)和Shin Etsu JNdi-1(143Nd/144Nd=0.512115)标准物质进行监控。锆石原位Hf同位素的测试是通过激光和MC-ICP-MS联用来进行。测试过程中Mud Tank和GJ-1标准锆石作为监控样品,监控整个分析测试过程的可靠性。锆石原位O同位素数据是通过对岩浆锆石进行二次离子质谱(SIMS)分析所获得的。测试过程中,Penglai标样的多次测定结果的外部精度优于0.30%(2σ)。所获得的数据为华南晚中生代地壳再造机制和过程提供了证据。研究成果发表于国际知名期刊Lithos上。
刘潇
该数据集包含了:湖南水口山和宝山花岗闪长岩样品的岩石岩性信息、样品年代学数据、样品全岩主微量元素和Sr-Nd同位素数据和样品单矿物锆石原位Hf-O同位素数据。岩石样品的年代学数据是通过对岩石单矿物分选的岩浆锆石进行激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测定的,测试过程中91500标准锆石作为监控样品,监控整个分析测试过程的可靠性。主量元素通过将岩石粉末熔融成可以上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、GBW-123、GSR-1、GSR-2和GSR-3的测量结果分析精度优于2%。微量元素通过在Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS标准物质(BHVO-2、GSR-1、GSR-2、GSR-3、SARM-4、AVG-2和W-2a)进行测定,作为外部测试标样校正未知样品的元素含量,分析测试精度优于3%。岩石Sr-Nd同位素通过对粉末进行酸性溶解,对所获得的溶液,在Neptune型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用NBS987(87Sr/86Sr = 0.71025)和Shin Etsu JNdi-1(143Nd/144Nd=0.512115)标准物质进行监控。锆石原位Hf同位素的测试是通过激光和MC-ICP-MS联用来进行。测试过程中Mud Tank和GJ-1标准锆石作为监控样品,监控整个分析测试过程的可靠性。锆石原位O同位素数据是通过对岩浆锆石进行二次离子质谱(SIMS)分析所获得的。测试过程中,Penglai标样的多次测定结果的外部精度优于0.30%(2σ)。所获得的数据用于支持含角闪石的花岗闪长岩可以通过以沉积岩为主的地壳源区的部分熔融所形成。研究成果发表于SCI期刊Journal of Asian Earth Sciences上面。
刘潇
地幔柱对克拉通的改造及后续动力学效应是关系到克拉通形成和演化的重要科学问题。峨眉山大火成岩省位于扬子克拉通西缘,是研究地幔柱对克拉通改造效应的理想窗口。在燕山期重大地质事件的深部过程与资源效应(专题号 2016YFC0600400)支持下,利用远震剪切波(SKS,SKKS和PKS)分裂获得了峨眉山大火成岩省地幔变形特征;结合波速结构、大地热流和火山岩分布等,揭示了地幔柱作用对克拉通的强化效应,以及强化的岩石圈对青藏高原东南缘现今深部过程的深刻影响;同时,也为深入认识上地幔顶部地震各向异性的起源以及软流圈-演示圈相互作用提供了新的视角。
李玮,陈赟
本文数据集包含花岗闪长岩全岩主量元素和微量元素、全岩Sr–Nd同位素、锆石Hf-O同位素、锆石U–Pb年龄数据。样品采集自青藏高原中部南羌塘地块加措地区的花岗闪长岩。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石Hf同位素是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对南羌塘地块侏罗世所处的构造背景提供认识。
孙鹏
该数据集主要包括西藏错那洞钨锡铍矿床中矽卡岩矿物的电子探针数据及部分原位微量元素数据。所分析的矽卡岩矿物包括石榴石,透辉石,符山石,方柱石,帘石,透闪石,金云母,电气石等。矽卡岩矿物电子探针分析在中科院地质与地球物理研究所电子探针实验室完成,原位微量元素测试在合肥工业大学原位矿物地球化学实验室完成。数据质量符合标准。电子探针分析已按照矿物化学式进行了矿物离子数计算。数据主要用以阐释错那洞矽卡岩矿物的类型及矽卡岩矿物中铍元素、锡元素的含量,并初步探索错那洞钨锡铍矽卡岩的成因机制。
何畅通
本文数据包含含矿埃达克质岩石B-Mo同位素分析数据和前人获得的部分主量和微量元素、全岩Sr–Nd同位素。样品采自中国中东部江西德兴斑岩矿区和长江中下游地区的沙溪、铜山口和封山洞斑岩矿区。岩性包括花岗闪长斑岩、石英闪长斑岩等。B-Mo同位素数据使用多收集器-电感耦合等离子体质谱(MC–ICP–MS)测定。通过获得的B-Mo同位素数据,结合前人获得的元素及Sr-Nd同位素数据,可以限定含矿埃达克质岩石的成因,并对斑岩矿化机制有所启示。
范晶晶
本数据为火山岩的锆石U-Pb年代学数据,全岩主微量地球化学数据和Sr-Nd-Hf放射成因同位素数据,矿物的主量元素地球化学数据以及锆石Hf同位素数据。样品采集西藏南羌塘改则地区去伸拉组火山岩,放射性同位素年代学数据通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得,全岩主微量地球化学数据通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得。Sr-Nd-Hf同位素数据通过多接收电感耦合等离子体质谱仪获得,矿物主量元素数据通过电子探针获得,锆石Hf同位素通过激光剥蚀-多接收电感耦合等离子体质谱仪获得。通过获得的数据,可以限定区域岩浆作用时代、岩石成因和动力学过程。
郝露露
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NBP,表征净生态系统生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NPP,表征生态系统净初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的GPP,表征生态系统总初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
本数据为岩浆岩的全岩稳定Fe同位素数据。样品采集自华南扬子板块西缘同德地区的新元古代闪长岩和辉长岩体。Fe同位素的化学处理是在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,全流程空白是25ng,回收率高于99%。数据是通过电感耦合等离子体质谱仪分析获得,其分析误差(2σ)低于0.06‰。通过获得的数据,可以限定新元古代同德岩体演化的精细过程,为中基性岩石的Fe同位素分馏机制提供新的制约。
李奇维
本文数据包含不同类型火成岩标样(玄武岩BIR-1a, 辉绿岩W-2a, 纯橄岩DTS-2b、WPR-1和橄榄岩GPt-3)和低Mo含量淡色花岗岩Mo含量和同位素比值分析数据。淡色花岗岩采自西藏南部萨嘎、错那和正嘎地区;Mo同位素分析数据通过使用多收集器-电感耦合等离子体质谱(MC–ICP–MS)测定,获得的标样及淡色花岗岩数据用与验证所建立的低Mo含量样品分析方法的精度和准确度,以实现对更多的低含量样品进行高精度的Mo同位素分析。
范晶晶
本文数据集包含辉长岩和其包体的全岩主量元素和微量元素、矿物主量元素和微量元素、全岩Sr–Nd同位素、锆石U–Pb年龄数据。样品采集自西藏南部拉萨地块打加错地区的辉长岩及其中的包体。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的,矿物微量元素数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对弧岩浆的角闪石分异过程提供认识。
王军
本数据为长江下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb测年数据和原位Hf-O同位素,磷灰石原位主、微量元素地球化学数据。样品为采自枞阳的A型花岗岩,岩性为碱性长石花岗岩和石英碱性长石正长岩。全岩主量元素数据由XRF分析获得,F元素的含量由ISE分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据和微量元素数据由LA-ICP-MS分析获得,原位O同位素组成由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究旨A1和A2型花岗岩的源区成分和岩浆作用过程,制约长江下游地区的构造演化。
江小燕
数据集包括伊朗西部Boroujerd侵入杂岩的伟晶岩的全岩主量元素和微量元素含量,以及从伟晶岩中挑选的石榴石的主量元素和微量元素。含石榴石的伟晶岩是从Ghale Samurkhan、Ghapanvari、Ghare Dash和Sang-e Sefid的四处露头处收集。 许多伟晶岩的粗粒结构和矿物各向异性(分层)使得收集全岩地球化学分析的代表性样品变得困难。然而,所研究的Boroujerd伟晶岩都没有显示出内部的分带性,并且根据Hutchison (1974)的建议,收集了足够大的样品来克服粒度大造成的偏差。使用jaw破碎机将样品破碎四等分,使用玛瑙研磨机粉末化。样品制备和全岩主、微量元素测定在中国科学院广州地球化学研究所同位素地球化学国家重点实验室进行。将大约2克岩石粉末准确地放入陶瓷坩埚中,放入马弗炉中,在950℃下保持4小时,然后冷却并重新称重,以确定烧失量(LOI)。将1.200±0.002克等分的LOI粉末放入铂坩埚中,并与9.600±0.002克Li2B4O7助熔剂混合。使用V8C自动熔化机在1250℃熔化混合粉末,并浇铸成均匀的玻璃丸。 使用Rigaku ZSX100e X光荧光光谱仪(XRF)测量主要元素的丰度。仪器按照国际标准进行校准,包括USGS火成岩标准,分析精度优于1%,主要元素精度在5%以内;主要元素的检测限为约30 ppm。 微量元素的分析使用Perkin-Elmer Sciex ELAN 6000 ICP-MS。将大约50毫克样品粉末准确称量到聚四氟乙烯胶囊(Teflon capsules)中,加入HF-HNO3溶液,密封胶囊并将其置于高压不锈钢容器中。将容器放入马弗炉中,在250℃下加热24小时,然后淬火,回收聚四氟乙烯胶囊,松开盖子,在加热板上将内容物干燥。向聚四氟乙烯胶囊中加入一份新的HF-HNO3溶液,并重复溶解和干燥程序。将沉淀物溶解在含5 ppb Rh和5 ppb Re的3% HNO 3溶液中,该溶液用作内部标准,以监控分析过程中的信号漂移。中国国家岩石标准GSR-1和GSR-3以及美国地质勘探局标准AGV-1、W-2、G-2和GSP-1用于校准测量样品的元素浓度。分析精度一般优于5%。 使用国家海洋局第二海洋研究所(中国杭州)的JEOL JXA 8100电子探针微区分析仪(EPMA)和四个波长色散光谱仪收集石榴石的背散射电子图像和主要元素组成。使用的操作条件:15千伏的加速电压、20 nA的束流、5μm的束直径、峰值10秒和每个背景10秒的采集时间。美国标准物质公司和中国标准物质公司提供的天然硅酸盐和纯氧化物用于校准电子探针。使用的标准和检测晶体包括铁铝石榴石(Si和Al;TAP晶体)、金红石(Ti;PET晶体),赤铁矿(Fe;LIF晶体),透辉石(Mg;TAP晶体),磷灰石(Ca;PET晶体),钠长石(Na;TAP晶体),钾长石(K;PET晶体),红柱石(Mn;LIF晶体),铬铁矿(Cr;LIF晶体)。使用JEOL所属软件对数据进行了简化,该软件应用了ZAF型矩阵校正,石榴石的化学计量是通过标准化的12个氧原子成分分析中得出的。分析元素的计算检出限优于100 ppm。单个元素的分析误差取决于绝对丰度;对于丰度在0.5至1wt%之间的元素,相对1σ精度优于10%,对于丰度在1至10wt%之间的元素,相对1σ精度优于5%,对于丰度大于10wt%的元素,相对1σ精度优于1%。 中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室利用LA-ICP-MS测定了石榴石的微量元素组成。LA-ICP-MS仪器由Agilent 7900 ICP-MS与ReSouncials RESOlution 193nm激光器、S-155双体积样品池(旨在避免交叉污染并减少背景冲洗时间)、Squid平滑装置(用于改善激光消融脉冲诱导的消融材料的混合和均质流速)和计算机控制的高精度X-Y平台 组成。烧蚀后的样品气溶胶与氩+氮气混合,以提高分析灵敏度,并在氦载气中传输至等离子体炬。激光器在80 mJ的动态能量下工作,衰减器值为25%,激光频率为8 Hz,光斑直径为74 μm。每次分析包括25秒的背景采集(气体空白),随后从样品中采集40秒的样品数据采集。ICP-MS对微量元素的检出限大多优于10 ppb,不确定度为5-10%。每个分析批次包括在开始和结束时对NIST612标准的两次剥蚀,和其间的五个矿物样品剥蚀。NIST612标准玻璃用作外部校准标准,而NIST610则作为监测标准进行分析,以评估仪器的精度和准确度。由电子探针测定的石榴石SiO2含量是从紧邻每个激光烧蚀坑的点收集的,用作计算元素丰度的内标。背景和分析信号的离线分析和整合,以及时间漂移校正和定量校准使用ICPMSDataCal软件。 该数据集可以用于解密伟晶岩岩浆起源。伟晶岩的矿物学和地球化学特征表明,伟晶岩为过铝至偏铝质的I型花岗岩。根据矿物组合和全岩地球化学,伟晶岩被划分为白云母型伟晶岩。电子探针分析显示,石榴石具有同心的成分分带,并且是铁-锰-铝石榴石固溶体,具有较少的镁铝榴石、钙铝榴石和钙铁榴石成分。石榴石中主要元素的同心分带归因于熔体中岩浆的生长。在MnO + CaO/ FeO + MgO (wt%)图中,石榴石的成分与熔体从弱到中度结晶一致。Boroujerd伟晶岩中的石榴石的特征是从中心到边缘,钇、铪、钛、锆、铌、钽、铪和铀的含量逐渐降低。石榴石还具有高的球粒陨石标准化的重稀土含量,具有几乎平坦的模式(Ybn/Smn = 0–508),较低的轻稀土元素含量,以及负铕异常(Eu/Eu* < 0.3)。这些元素从核心到边缘的变化归因于岩浆分馏的增加。Boroujerd伟晶岩石榴石中的成分、主量和微量元素分带模式与岩浆起源和不同分馏I型岩浆结晶相一致,表明石榴石晶体化学是解密伟晶岩岩浆起源的重要工具。
丁兴
本文数据集包含闪长岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd同位素、锆石U–Pb年龄和Hf同位素数据。样品采集自西藏北部可可西里地块五道梁地区的闪长岩。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。锆石Hf同位素数据是通过激光剥蚀-多接受电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对大陆地壳高镁安山质特征的起源提供认识。
王军
该数据集包含了2019年1月1日至2019年12月31日的青海湖流域自动气象站观测数据。共有两个站点,其中鸟岛站位于青海省海南州共和县,观测点经纬度36°58′N,99°52′E;瓦颜山站位于青海省海北州刚察县伊克乌兰乡观测点经纬度37°44′ N,100°05′ E。观测要素包括3层(1m、5m、10m)空气温度(℃)和相对湿度(%),大气压强(hpa)和光合有效辐射(W/m2)。数据基于CR1000 数据采集器收集,使用hmp155a测量空气温度与湿度,使用CS106测量大气压强, 使用LI200R测量光合辐射,每半小时进行一次数据记录。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
本数据为铜陵地区铜官山铜-金多金属矿床埃达克岩以及其中包体的全岩主微量元素和Sr-Nd同位素地球化学数据,以及锆石原位Hf-O同位素、U-Pb测年数据和磷灰石原位主、微量元素地球化学数据。样品为埃达克质侵入岩和包体,围岩的岩性为花岗闪长岩、石英二长闪长岩,包体的岩性为石英二长闪长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊 (Ore Geology Reviews),数据真实可靠。通过获得的数据,可以研究埃达克质岩及与其伴生的铜金矿床的成因。
江小燕
数据内容包括池州铜钼矿床辉钼矿的Re-Os同位素年龄. 试验地点位于中国地质科学院北京地质分析中心稀土Re-Os实验室,试验设备通过TJAX系列ICP-MS测定了辉钼矿的稀土Re-Os同位素组成。 Re-Os同位素年龄实验特性:每个年龄测定的不确定度约为1.5%,包括187Re衰变常数的不确定度、同位素比值测量的不确定度和尖峰标定。衰变常数为λ (187Re)=1.666×10-11 year−1。根据以上规则形成最终年代学数据。 以上数据已发表于SC期刊,数据真实可靠。上传数据为Excel表格格式。
谢建成
主微量元素数据在中国科学院广州地球化学研究所同位素地球化学国家重点实验室由ICP-MS完成测定。锆石U-Pb年龄和锆石微量均在中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室由LA-ICP-MS完成测定。同批次测定的国际标样和参考值在误差范围内一致,全流程空白低,数据质量准确可靠。管店岩体由石英二长岩构成,准铝质,属于高钾钙碱性系列。样品具有高SiO2 (59.15 - 62.32%),Al2O3 (14.51 - 15.39%),Sr (892 - 1184 ppm)含量,Sr/Y (56.74 - 86.32)比值,以及低Y (12.65 - 18.05 ppm)含量,这些地球化学特征类似于典型的埃达克质岩。管店岩体具有较高的K2O (2.88 - 3.86%)含量,MgO (3.89 - 5.24%)含量和Mg# (55 - 60)值,亏损高场强元素(Nb,Ta和Ti),以及Ba,Pb和 Sr正异常。LA-ICP-MS锆石U-Pb定年结果显示,锆石的加权平均年龄为129.2 ± 0.7 Ma。基于原位锆石微量元素分析,计算得出锆石Ce4+/Ce3+ = (6.97 - 145),(Eu/Eu*)N = (0.23 - 0.42)。相比于长江中下游和德兴铜矿含矿的埃达克质岩,管店岩体具有较低的氧逸度,这与该区域不含矿的事实一致。结合前人研究,我们提出:管店埃达克质岩岩体是由发生在早白垩世太平洋板块和伊泽奈崎板块的洋脊俯冲所诱发的拆沉下地壳的部分熔融所形成。在洋脊俯冲过程中,物理碰撞导致了加厚下地壳的拆沉,而热化学侵蚀引发了拆沉下地壳的部分熔融。
罗泽彬
本文数据集包含火山岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd-Hf同位素、锆石U–Pb年龄和O同位素数据。样品采集自西藏中部羌塘雁石坪地区的玄武岩和流纹岩。锆石U-Pb年代学数据和氧同位素数据是通过二次离子探针质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针获得的。岩石全岩Sr–Nd-Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制。
王军
青藏高原城镇化地区水质调查数据主要包括湟水流域以及其他青藏高原重点城镇化地区的水质调查数据。数据主要是在2020年7-8月期间,利用哈希DR900水质测量仪对湟水流域各河段以及流经青藏高原主要城镇河流的上下游河段水质进行实地测量获取。主要参数指标包括:总氮、总磷、氨氮、化学需氧量、溶解氧含量、pH值、硬度、浊度和色度。其中,化学指标(总氮、总磷、氨氮、化学需氧量)于科考结束后在实验室统一测定,使得水样采集与水质测定的时间相距过久,氨氮含量已失准,因此部分水样的氨氮未进行测量。此外,由于测试费预算限制,仅测定了高原城镇出水口单个采样点的化学指标,其余水样仅现场测定了物理指标。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究和相关生态水文模型验证提供支持。
何春阳, 刘志锋, 夏沛
数据内容包括池州地区花岗闪长岩(斑岩)的Nd、Sr同位素组成及其LA-MC-ICP-MS锆石Hf同位素组成。 Rb-Sr和Sm-Nd同位素数据测算地点位于中国科学技术大学放射成因同位素地球化学实验室,使用仪器为Finnigan-MAT-262热电离质谱仪。 锆石的Lu-Hf同位素组成测算地点位于南京大学矿床研究国家重点实验室,利用海王星多采集器ICP-MS(LA-MC-ICP-MS)上的193nm激光进行测算。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据通过Excel表格上传。
谢建成
在池州地区,对样品花岗闪长岩(斑岩)全岩进行分析,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 全岩主微量元素试验地点是位于中国科学院广州ALS实验室组,主量元素采取X射线荧光法测算,微量元素及稀土元素采用ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
地震观测数据可用于构建地壳和上地幔地震波速结构、约束壳幔变形特征。伊朗高原东南缘是大陆碰撞和大洋俯冲的过渡地区,对该地区的研究可以为认识汇聚板缘作用及其板内构造响应的联系提供重要依据。数据来源于本课题组布设的流动地震台阵,选址要求严格,所有台站均配备Trillium 120PA地震计(120 s-175 Hz)及Taurus数字采集器。本数据集为P波初至前100 s至后200 s的波形数据,事件震级大于等于5.0级,震中距范围为30°- 90°。数据可用于认识俯冲-碰撞转换带的深部动力学过程。
陈凌
数据集为青藏高原吉隆-尼玛跨喜马拉雅造山带GPS活动变形重复测量原始数据。该数据为2018年和2019年两次的测量结果,包括13个台站数据,数据质量良好。通过这些测点的观测数据,结合项目研究团队已经在喜马拉雅造山带沿亚东-谷露布设的连续GPS观测剖面数据可以揭示印度大陆向北汇聚的应变在喜马拉雅造山带关键部位的水平、垂直分布特征;认识喜马拉雅造山带现今隆升状态,与水平运动的关联;结合活动断层运动位错理论,研究震间应变在主边界断裂(MBT)、主中央断裂(MCT)等的定量分配,震间的应变累积特征、断层闭锁范围、断层闭锁程度,为评价研究区活动断层地震危险性提供重要约束;结合2015年尼泊尔地震破裂模型,从运动学到动力学视角研究青藏高原南缘岩石圈流变学特征。
何建坤
在池州地区,对样品花岗闪长岩(斑岩)中的副矿物磷灰石进行提取筛选,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 主量元素试验地点位于合肥工业大学资源与环境工程学院,实验仪器为JEOL-JXA-8230M电子探针。微量元素试验地点是位于中国科学院广州地球化学研究所同位素地球化学国家重点实验室,采用LA-ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
本数据为长江中下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb-O同位素及测年数据和磷灰石原位主、微量元素地球化学数据。样品为采自青阳-九华山地区的I型和A型花岗岩,岩性包括花岗斑岩、花岗闪长岩、碱性花岗岩和二长花岗岩,以及其中的暗色包体。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究庆阳-九华山杂岩体的成因和演化过程,约束岩浆形成过程的物理化学条件,制约其形成的构造环境。
江小燕
数据集包括利国铁-铜-金矿床利国侵入体的全岩主微量元素、Sr-Nd同位素组成、磷灰石的主微量元素以及磷灰石的Sr-O同位素组成。全岩主微量元素在澳实分析检测(广州)有限公司分析,经过偏硼酸锂熔融,使用X射线荧光(XRF)光谱仪分析主量元素,分析准确度和精确度在1%以内,微量元素用ICP-MS分析,分析准确度和精确度在5%以内。Sr-Nd同位素组成在中国科学院广州地球化学研究所用MC-ICP MS分析,测量的143Nd/144Nd和87Sr/86Sr比分别标准化标与标准样品的标准值非常一致。采用标准的破碎、筛分、重液分离和磁分离技术从全岩石样品中收集磷灰石,然后安装在一个环氧树脂盘中,并抛光到近一半的部分,以暴露内部结构。磷灰石主量元素在国家海洋局第而海洋研究所使用电子探针分析。微量元素在中国科学院广州地球化学研究所矿物学与成矿学重点实验室通过原位LA ICP-MS进行分析。仪器工作条件为,消融时间40s,激光斑点直径为43μm,重复频率为6Hz。使用NIST610作为主要的外部校准标准,使用43Ca(由定量电子微探针法确定)作为内部标准。漂移校正、离线选择、集成背景和分析信号,以及微量元素的定量校准都使用ICP-MS DataCal软件进行校准。磷灰石原位Sr同位素分析在西北大学地质系大陆动力学国家重点实验室,仪器工作条件为,消融时间为50s,激光斑点直径为60μm,重复频率为6Hz。根据Sr987和Alfa Sr标准校准磷灰石的同位素成分。测量的磷灰石标准Sr987的87Sr/86Sr比值和AlfASr的分别为0.71025±21(n=29,2σ)和0.70727±32(n=30,2σ)。在北京SHRIMP中心测量了磷灰石原位氧同位素分析。SHRIMP IIe/MC配备了可拆卸的Cs主离子源、电子枪、多集电器和亥姆霍兹线圈,以获得高精度的O同位素测量。每18O/16O分析取约7min,斑点直径为23μm。用Durango磷灰石的同位素成分进行了校准。Durango磷灰岩实测δ18O平均值为9.81±0.66‰(2σ),与以往误差范围内的研究结果相似。因此以上数据均具有可靠性。 该数据集包括含矿岩体以及其磷灰岩地球化学和同位素特征,可以帮助我们了解它的岩石成因和矿化的控制因素。来自I组和II组的磷灰岩都是岩浆成因的含氟磷灰岩,其特征为负Eu异常、富集LREE、亏损HREE。同时,两组均具有较高的Sr/Y和δEu,表明了源岩的斑岩埃达克岩特征。与整个岩石的同位素相比,两组磷灰岩的变量87Sr/86Sr(0.70250-0.71262)和δ18O(6.22-9.00)值表明了地幔、地壳和/或沉积物衍生物的贡献。虽然I组磷灰石和II组磷灰岩具有相似的地球化学特征,但I组磷灰石先于斜长石结晶,无Sr-(La/Yb)N/(La/Sm)N/(Sm/Yb)N相关性,而II组磷灰石与斜长石结晶一致,呈正相关。这些对氧化还原环境敏感的元素(δEu、δCe、MnO、V)的地球化学表明,显示出高氧逸度(在HM和NNO之间),I组磷灰石系统的氧逸度高于II组磷灰石。更重要的是,第一组磷灰石和第二组磷灰石之间不同的微量元素和氧逸度特性可以作为矿化指标,首次绘制出铁-铜-金矿化范围。此外,母岩浆中估计的F和Cl含量(F=1300-2446ppm,Cl=140-4780ppm)高于原始地幔和平均大陆地壳中的含量,表明来F和Cl的富集过程。根据上述埃达克岩特征、高氧逸度、高氟氯含量,推测太平洋板块俯冲可能是利国成岩和矿化的主要动力机制。
丁兴
表格内容包括池州地区花岗闪长岩(斑岩)的锆石年代学及微量元素地球化学数据分析结果等信息。实验方法是LA-ICP-MS。利用合肥工业大学资源与环境工程学院的agilent7500a-ICP-MS仪器和compexpro102193nm波长ArF准分子激光源,对锆石的U-Pb同位素组成进行了分析。分析使用了80mj的激光能量和6hz的重复频率,频率为32μm光斑大小和50秒消融时间。锆石同位素比值用icpmsdatacalv计算。此数据可为池州地区花岗闪长岩(斑岩)日后地球化学模型分析提供数据支持。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本表格内容主要对池州地区花岗闪长岩(斑岩)样品特征进行描述,表格元素包括岩体名称、采样位置、岩石类型、结构、主要矿物、相关矿床年龄研究方法、岩石年龄数据等相关数据。通过对前人学者的研究总结,对于相关岩石年代研究方法包括LA-ICP-MS、SIMS、SHRIMP等,池州地区花岗闪长岩(斑岩)样品年龄主要处于139.6±2.1至149.4±1.2之间。岩石的主要矿物组成为20-30%石英,20-25%钾长石,35-40%斜长石,10%黑云母,5%角闪石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本数据包括Excel以及Jpg格式图。Excel数据包括:全岩常量和微量元素、Rb-Sr和Sm-Nd的含量和同位素比值。 使用传统技术将所有样品粉碎至小于200目。在中国广州ALS Minerals/ALS Chemex实验室进行了全岩常量和微量元素分析。 在中国科学技术大学壳幔物质与环境重点实验室,采用同位素稀释法测定了Rb-Sr和Sm-Nd的含量和同位素比值。 Jpg图片格式数据包括:(1)张八岭和肥东侵入岩的野外照片和显微照片(交叉偏振光)。(2)张八岭侵入岩样品中典型锆石的阴极发光(CL)图像。(3)研究区域的简化地质图(a) 研究区域及周边地区(b) 研究区包括张八岭和肥东地区。(4)张八岭侵入体锆石U-Pb同位素的一致性图。(5)肥东侵入体锆石U-Pb同位素一致性图。(6)TAS火成岩图解 (7)MgO与SiO2(a)和Mg#与SiO2(b)的关系图(8)球粒陨石标准化稀土模式(9)Sr/Y与Y)和(La/Yb)N与YbN图表(10)张八组中生代岩浆岩(La/Yb)N和YbN代表La/Yb和Yb归一化的球粒陨石。 (11)张八组晚中生代岩浆岩的初始Sr–Nd同位素组成。大别高Sr/Y花岗岩类资料 (12)晚中生代铅的初始同位素组成 (13)张八组岩浆岩年龄分布图组 (14)锆石张八组侵入岩的Hf(t)与U–Pb年龄图以及其他地区岩石的数据。 (15)张八组晚中生代岩浆岩。 通过本数据库可为研究张八岭北部和肥东南部两个地区的深部地壳过程和构造亲缘关系提供依据。
闫骏, 黎乙希
该数据集包含了:云南腾冲地块早白垩纪高镁闪长岩和花岗闪长岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的数据用于在腾冲地块东缘识别与俯冲沉积物相关的早白垩世高镁闪长岩,为班公湖-怒江缝合带东南延伸提供了证据。研究成果发表于国际知名期刊Lithos上。
马鹏飞
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪玄武岩、闪长岩、花岗闪长岩和花岗岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的晚二叠纪的富Nb玄武岩年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素可用来指示古特斯哀牢山洋俯冲与峨眉山地幔柱相互作用的过程,并发表于国际知名期刊Geophysical Research Letters上。所获得的闪长岩-花岗闪长岩的锆石年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素用来示踪古特斯哀牢山洋东向俯冲过程,为洋盆的东向俯冲提供了新的证据,并发表于国际知名期刊Lithos上。所获的A型花岗岩的年代学数据、锆石Hf-O同位素数据和全岩主微量数据和Sr-Nd同位素数据可被用于指示古特斯哀牢山俯冲与峨眉山地幔柱相互作用过程,并发表于国际知名期刊GSA Bulletin上。
徐健
本数据为长江下游A型花岗岩的全岩主、微量元素、Nd同位素地球化学数据,以及锆石原位Hf-O同位素数据和磷灰石主、微量元素地球化学数据。样品为采自安徽花园巩岩体的正长花岗岩和石英正长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Nd同位素组成数据由MC-ICP-MS分析获得。锆石原位O同位素组成由SIMS分析获得,锆石原位Lu-Hf同位素组成的测试选择与O同位素相同的位置点进行,数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究A1和A2型花岗岩共存的成因,以及中生代晚期长江中下游地区A型花岗岩形成的构造环境。
江小燕
本数据为埃达克质侵入岩的全岩主微量元素、Sr-Nd同位素地球化学数据以及锆石原位微量元素数据、Hf-O同位素和U-Pb测年数据。样品为采自西藏地区冈底斯南部的冲江矿床(钻孔CJZK1407与CJZK1119)的黑云母二长花岗质斑岩。采自钻孔CJZK1407的样品全岩主量元素数据由XRF分析获得,而采自钻孔CJZK1119的样品的全岩主量元素数据由ICP-AES分析获得。全岩样品的微量元素数据均是由ICP-MS分析获得。全岩样品的Sr-Nd同位素数据由MC-ICP-MS分析获得。锆石U-Pb同位素测年以及微量元素数据由LA-ICP-MS分析获得。锆石O同位素数据由SHRIMP分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据结果真实可靠。通过获得的数据可以研究埃达克岩的成因,约束冲江斑岩铜矿的成因及构造背景。
胡永斌
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪以及保山地区寒武纪-志留纪碎屑地层的沉积岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素组成。岩石样品的年代学数据是通过对碎屑锆石进行激光剥蚀等离子体质谱(LA-MC-ICPMS)测定的,对标准样品单颗粒锆石91500测试的误差优于5%;主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。所获得的的哀牢山二叠纪-三叠纪碎屑沉积岩的碎屑锆石年龄谱,以及主微量元素组成可以用来有效限制古特提斯哀牢山洋从俯冲到闭合的演化过程,目前已经发表在国际知名期刊Tectonics、GSA Bulletin和Journal of Asian Earth Sciences,和国内著名期刊《大地构造与成矿》之上。数据将来可被广泛引用,用于限制古洋盆的演化历史研究。所获得的的保山地区的寒武纪-泥盆纪碎屑岩的碎屑锆石年龄谱以及Hf同位素数据可以用来有效限制保山地块在早古生代的大地构造位置,相关数据已经发表在国内知名期刊《岩石学报》上,数据将来可被广泛引用,用于进行冈瓦纳大陆重建的工作中去。
徐健
本数据为锡石的U-Pb年龄和原位主、微量地球化学数据。样品来自于中国西南部个旧地区的高松锡铜矿田,其中样品GS-1采自矽卡岩中的锡石-硫化物矿床,样品LTB-1与LTB-2采自碳酸盐岩中的锡石-氧化铁±硫化物矿床。锡石的主量元素地球化学数据是通过电子探针分析获得,锡石的原位U-Pb年龄和微量元素地球化学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得。通过获得数据可以约束高松锡铜矿床中锡矿化的时间和锡石的沉淀环境,从而得出层状锡石-氧化铁±硫化物矿石的成因。
郭佳
数据集包含川藏铁路沿线泥流阶地分布数据与川藏铁路沿线碎屑散粒体分布数据,川藏铁路沿线泥流阶地分布数据基于近几年我国高分二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出的川藏沿线冻融泥流阶地分布图。最大单块泥流阶地1030043 m2,位于康定市境内,距离川藏铁路新都桥站约12km,最小单块泥流阶地1102 m2,位于乃东区境内,距离川藏铁路甲村站约3.3km,沿线泥流阶地平均面积为45013 m2,沿线泥流阶地主要分布在康定市、察雅县以及桑日县境内。 川藏铁路沿线碎屑散粒体分布数据基于研究区高分二号遥感影像资料,解译了川藏铁路理塘至林芝区间段广泛发育的斜坡散粒体,斜坡散粒体将其根据流动特征和结构模式,划分为活动型和原位风化型。目前该研究区共识别出斜坡散粒体病害2308条,覆盖面积达1283.21km2,平均面积0.56km2,最小上图面积为600m2,集中分布在海拔3700m~5500m之间,平均海拔为4767.78m。研究区范围内的斜坡散粒体约95%的单块斜坡散粒体面积小于2.0×104m2,平均面积在55.5×104m2,面积最大单块斜坡散粒体面积为9148×104m2;斜坡散粒体主要分布在高程值4500-5400m之间,占总斜坡散粒体块数的87.9%,其中高程值在5000-5400m的斜坡散粒体块数占为47.7%,平均高程值为4945m,海拔最低的单块斜坡散粒体其高程值为3241m;研究区范围内的斜坡散粒体坡度值主要介于30-70°之间之间,占总斜坡散粒体块数的89.5%。该数据集制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。为冻融泥流发育规律和古气候研究提与川藏工程走廊斜坡散粒体地理分布特点提供了研究基础。
江利明, 黄荣刚, 王慧妮
本文数据包含火山岩的全岩主量元素和微量元素、锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学、锆石微量和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。通过获得的数据,结合已有文献数据资料,可以限定区域内岩浆作用的时代、成因和形成背景。
帅雪, 李世民, 朱弟成
本文数据包含火山岩的全岩主量元素和微量元素、全岩Sr–Nd-Pb同位素和锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd-Pb同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。
李世民, 王青, 朱弟成
该数据集主要内容为G317和G318国道沿线边坡及路面工程病害调查数据集,通过现场调查获得,调查时间为2020年1月9日-1月19日,2020年8月10日至2020年9月2日。调查对象为川藏北线G317(那曲-甘孜)和川藏南线G318(拉萨-新都桥)。调查的病害类型主要包括冻融诱发的边坡病害及灾害(落石、危岩体及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及冬季的涎流冰病害。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解川藏工程走廊主要公路工程冻融病害情况及相关研究提供依据。
牛富俊
本数据集主要包括对中国东部中生代以来玄武岩Li同位素分析结果,地点包括东北地区诺敏河和五大连池地区,华北昌乐、蓬莱和山旺地区,华南明溪、闽清、龙海、旗尾山、藩坑和青龙山等,Li同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得,测试精度好于0.3‰。玄武岩Li同位素的数据将对了解中国东部地幔的演化提供重要的数据支撑。数据结果显示部分中生代玄武岩由于较长的地表暴露经历了风化,还有的受到外界热液流体的影响而蚀变。新生代玄武岩的地幔源区和亏损地幔间并未存在较大的分馏,部分偏低的Li同位素组成可能是源区地幔受到沉积物来源熔体的交代。
王洋洋
本数据集对栏杆玄武岩进行了详细的地球化学分析,主要包括全岩主/微量元素、Sr-Nd-Pb同位素分析,锆石U-Pb定年、Hf同位素分析以及硅酸盐熔体包裹体主/微量元素分析。其中主量元素测试同时使用X射线荧光光谱仪(XRF)进行分析,数据误差小于5%。全岩微量元素分析使用电感耦合等离子体质谱仪(ICP-MS),分析结果误差小于5-10%。通过主、微量元素组成特征,可以有效判断栏杆玄武岩分类及成因。全岩Sr-Nd-Pb同位素采用多接收电感耦合等离子质谱仪(MC-ICP-MS)完成,测试结果包括86Sr/88Sr、146Nd/144Nd、206Pb/204Pb、207Pb/204Pb以及208Pb/204Pb比值。Sr-Nd-Pb同位素作为很好的岩浆源区示踪剂,能够示踪栏杆玄武岩源区组成。相比于全岩成分,早期结晶的矿物捕获的硅酸盐熔体包裹体能够代表最初始的熔体组成。本文通过激光剥蚀电感耦合等离子体质谱仪LA-ICPMS分析测试了单个熔体包裹体组成,分析误差小于5%。通过熔体包裹体组成可以判断形成栏杆玄武岩的初始熔体具有更难熔的特征。锆石,作为常用的定年副矿物,已经被广泛用于U-Pb定年。通过LA-ICPMS原位分析技术,有效测定栏杆玄武岩中分选的锆石颗粒,其定年结果指示栏杆玄武岩形成于侏罗纪时期。锆石原位Hf同位素能够有效示踪形成锆石的物质来源,本文锆石Hf同位素采用高分辨率Nu Plasma II MC-ICP-MS进行分析,在分析过程中, 标准锆石(91500)和蓬莱(Penglai)锆石的176Hf/177Hf比值分别为0.282301±0.000017(2σ,n = 15)和0.282915±0.000014 (2σ, n=18),与前人报道的一致。Hf同位素分析结果显示存在富集组分的加入,结合全岩元素和同位素组成进而判断栏杆碱性玄武岩可能是由于俯冲板片脱水交代上覆岩石圈地幔发生部分熔融形成的。
王晓霞
本文数据包含火山岩和花岗质岩石的全岩主量元素和微量元素、全岩Sr–Nd同位素和锆石U–Pb年龄和Hf–O同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏中部达如错地区的花岗闪长岩、二长花岗岩、正长花岗岩、安山岩、英安岩、流纹岩、砂岩和板岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石O同位素地球化学数据是通过二次离子探针获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景,进行沉积岩物源分析。
李世民, 王青, 朱弟成
经过整理的有文献资料的和卫星影像上能观察到的泥石流-堰塞湖-溃决洪水灾害链编目数据与分布图。在数据中泥石流被分为一般泥石流与冰川泥石流两种类型,发生时间从1953年到2019年不等。该数据主要通过文献资料调查结合遥感判识确定灾害链发生的位置、类型等信息,再整理成表格与生成矢量数据。数据由调查文献资料与遥感目视解译生成。由于无法判断许多灾害的确切发生时间,因此难以评价数据的完整性。灾害点编号为野外科考区域代码+河流流域名称首字母代码+灾害链类型代码+四位顺序数字编号。详见Excel数据文件。
周丽琴, 唐晨晓
本文数据为花岗岩的岩石全岩主量元素和微量元素、全岩Sr–Nd–Pb–Hf同位素和锆石U–Pb年龄和Hf–O同位素数据。样品采集自西藏北部唐古拉地区的正长花岗岩和二长花岗岩。放射性同位素年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd–Pb–Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石Hf-O同位素地球化学数据是通过激光剥蚀-多接收等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。这些新数据,结合文献数据,进一步证实唐古拉大型花岗岩基侵位于南–北羌塘地体的同碰撞过程。其富集的Sr–Nd–Pb–Hf–O同位素组成指示其主要来源于再循环浅表物质的部分熔融,并有幔源物质加入。本文的研究表明同碰撞期间也可形成大型花岗质岩浆活动。
宋绍玮, 朱弟成, 王青
横断山多尺度致灾、孕灾、承灾数据时空统一数据集包含了由高程数据衍生的一系列地貌数据、年均归一化植被指数数据、年均气温与降雨数据、VIIRS夜间灯光数据。其中地貌数据覆盖横断山地区,植被与气候相关数据覆盖青藏高原,夜间灯管指数数据覆盖全国范围。数据收集时间根据来源不同而异,最早为2000年,最晚为2018年。该数据集主要是为了进行灾害、风险评价而准备。本数据集将这些数据整理进行了重采样、空间校正、光学校正、地貌因子计算、空间统计等流程加工,数据精度与其数据源的原始精度数据一致,未经过降采样等模糊处理。处理过程中采用了科学标准流程,区分了连续与不连续型数据,将处理过程中的数据损失降到最低。
唐晨晓
本数据集主要包括南岭地区水口山和西华山花岗岩的磷灰石原位Sr-Nd同位素和锆石原位Hf-O同位素数据,漂塘钨矿床黑钨矿微量元素数据及单个流体包裹体LA-ICP-MS成分分析数据,西华山钨矿床黑钨矿石英稳定O同位素数据及单个流体包裹体LA-ICP-MS成分分析数据。利用相关数据,结合流体包裹体原位分析和精细矿物学研究,揭示了华南地区黑钨矿沉淀的过程与机制,发现了赋存在岩体内部的黑钨矿由水-岩相互作用所致,而赋存于岩体外部的黑钨矿则由岩浆流体沸腾冷却形成,并非以往人们认为两种类型黑钨矿具有相同的沉淀过程,这为深入理解脉型黑钨矿矿床提供了新认识,丰富和发展了钨成矿理论体系,拓宽了找矿思路。
阳杰华, 刘亮
本数据集主要包括东南沿海花岗岩的锆石U-Pb同位素测年、原位Hf同位素数据,岩石全岩主微量地球化学数据以及Sr-Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定了燕山早期陆缘弧典型花岗岩(福建锦城和浙江梵音洞花岗岩)的成因,并结合东南沿海燕山早期岩浆岩的现有研究数据,厘定中国东南部早-中侏罗世陆缘弧岩浆岩带,限定太平洋与特提斯构造转换具体时限,这为深入理解古太平洋板块俯冲的早期历史提供了新的认识。
刘亮
本数据集主要包括马来西亚花岗岩的锆石U-Pb同位素定年、微量元素、原位Hf同位素数据,锡石U-Pb定年数据,岩石全岩主微量地球化学数据以及磷灰石原位Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定马来西亚的多期S型花岗岩,指出这类花岗质岩浆富氟和还原性的特征对锡成矿作用极为有利,并建立岩浆与古特提斯洋的俯冲、中缅马苏地块—印支地块碰撞的具体联系。通过矿石矿物锡石的U-Pb定年和成矿花岗岩研究,直接限定了三期重要锡成矿事件,首次建立了东南亚锡成矿年代学格架,确定了锡成矿的控制因素,明确了锡成矿与特提斯的演化关系。
刘亮, 阳杰华
本数据集主要包括浙江小将-北漳地区侵入岩(花岗岩与岩脉)的锆石U-Pb同位素测年、微量元素、原位Hf同位素数据,岩石全岩主微量地球化学数据以及矿物主量地球化学数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定了燕山晚期花岗岩成因、中酸性岩浆中富铁和富镁的具体机制,并结合东南沿海白垩纪岩浆岩的现有研究数据,揭示了古太平洋板块俯冲的具体过程和深部动力学机制,为燕山晚期古太平洋板块运动方式转变提供重要的岩石学证据。
刘亮
本数据通过GIPL1.0冻土空间分布模型,结合已有基础数据,包括气候变化,土壤类型,以及植被数据,对川藏线的多年冻土以及季节冻土特性进行了模拟,数据结果为500m空间分辨率栅格,包括了多年冻土区最大化深度以及季节冻土区最大冻结深度。该结果通过了钻孔数据验证。数据日期为2001-2019,2041-2060,2081-2100(20年平均值),其中水体以及冰川区域通过掩膜排除在计算范围以外(空值)。气候数据为月均值,其他数据在模拟的过程中保持不变,空间分辨率都为500m。数据来源与“WoeldClim:https://www.worldclim.org/,DEM以及植被土壤:https://data.tpdc.ac.cn/zh-hans/”根据不同数据源的特点对原始资料进行真实性、一致性的检查及规范化处理;利用冻土模型对多年冻土及季节冻土进行计算模拟,输出结果为地温和活动层(最大冻深),模拟结果与钻孔地温进行验证。最终空间数据集通过ArcGIS成图。制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。数据可为后期开展川藏工程走廊冻结(融化)深度相关研究工作提供必要的数据支撑。
尹国安
该数据集包含位于西藏自治区昌都市江达县岗托镇矮拉山附近(98°29′16″E, 31°36′36″N)冻融滑坡及融冻泥流浅层地温、水分及现场气象要素监测数据,基于Hobo温度、水分及小型气象站通过现场监测获得。观测时间在2019年8月31日-2020年7月14日之间。通过一个完整冻融周期的现场监测,下载现场传感器自动获取的地温、水分及气象要素监测数据,通过一定的质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。地温、水分观测时间间隔4小时,地温的观测深度为10cm, 20cm, 40cm, 60cm,80cm,100cm,150cm及200cm,共8层,水分的观测深度为20cm,50cm,100cm及200cm共4层。气象观测要素主要包括气温、降雨量、风速、风向及太阳辐射等,观测的时间间隔为30分钟(注:太阳辐射传感器最大量程为1276.8 W/m2,实际太阳辐射值大于最大量程时显示为1276.9 W/m2;风速传感器的最小启动风速为0.5m/s,当实际风速小于启动风速时,显示值为0。因此该数据无法体现超太阳常数现象和低于0.5m/s的风速)。质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。经过矫正的最终数据以excel文件存储。获取的现场数据经多人复查审核,数据完整性和准确度达到95%以上。监测数据可为后期开展藏东南地区冻融滑坡和融冻泥流相关研究工作提供必要的数据支撑。
牛富俊
本数据为火山岩锆石U-Pb数据,岩石全岩主微量和同位素地球化学数据,锆石Hf同位素数据。样品采集自西藏南部泽当地区桑耶寺附近拉萨地体南部的玄武岩、玄武安山岩、安山岩和英安岩。放射性同位素年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。锆石Hf同位素地球化学数据是通过激光剥蚀-多接收等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。
张亮亮
本数据集主要包括来自安徽省南部东源钨矿和竹溪岭钨矿两个矿区中白钨矿矿化花岗闪长斑岩的全岩主微量元素组成,石英斑晶以及石英脉体中的流体包裹体显微测温结果等,地球化学主量数据利用XRF测试,微量元素由ICPMS测试获得,精度分别可达2%和5%。流体包裹体测温是由Linkam显微测温台获取,温度测试精度在零度以下好于0.5℃,而高于零度时好于1℃。这些数据对于解释白钨矿床的成岩成矿过程,尤其是热液过程的演化以及伴随的白钨矿沉淀成矿过程具有重要的指示意义,其显示斜长石的蚀变分解是该地区白钨矿床的主要成因机制。
王洋洋
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
青藏高原城镇化地区生物多样性调查数据集主要包括青海湖流域水鸟多样性调查数据集和植被多样性调查数据集。主要于2020年7-8月,在环青海湖区域设置了24个水鸟观测样地,分布于甘子河湿地、布哈河口等地区,利用望远镜、无人机等手段,记录水鸟种类和种群数量。依据环青海湖区域植被类型设置28个1m×1m样地,主要调查植被类型、频度、生物量。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
本数据集为青藏高原城镇化地区(湟水流域、黑河流域及青藏高原主要城镇)主要植被类型的光合作用相关参数与叶面积指数数据集。 1) 测量目的 生态调查数据可以用于青藏高原城镇化地区生态水文模型研究的参数化与验证工作。 2) 测量仪器 LI-6800便携式光合作用测量仪,LAI2200冠层分析仪。 3) 测量时间与地点 2019年7-8月在黑河流域测量,2020年7-8月在湟水流域及青藏高原重点城镇地区测量。 4) 测量参数与数据处理 根据生态水文模型实际需要,我们从Li-6800与LAI-2200测量的原始数据中筛选出E:蒸腾速率(mol m⁻² s⁻¹),A:净光合速率(µmol m⁻² s⁻¹), Ci:胞间CO2浓度(µmol mol⁻¹)等12个主要指标。 5)数据存储 数据集采用Excel格式进行存储,配套数据包括测量样地的经纬度、主要植被类型等。
何春阳, 刘志锋, 陈奔新
为评估构建农牧昆虫DNA条形码快速鉴定体系,并提出合理的可持续利用建议,2019年至2020年,本课题对采自青藏高原地区主要农牧区的半翅目昆虫、蜜蜂类传粉昆虫、鳞翅目昆虫、寄生蜂等膜翅目天敌、象甲和膜翅目以外类群的天敌昆虫等进行常规DNA提取、使用通用引物进行PCR扩增和测序,获得相关DNA条形码序列2000条。数据以fas文件存储。样品物种、采集地等信息汇总至《第二次青藏科考高原动物多样性保护和可持续利用(2019QZKK0501)标本组织样品信息(2020)》。
乔格侠
在暴露于地面的石头制品的密集区域中,布置了五个大小不同(约2×2.3 m)的四方体(T1-T5)。使用技术类型学对石材进行了收集和详细分析。此外,具有1.2的四方体选择×0.5 m的土壤并去除10 cm的表层土壤,以2 cm的间隔通过湿筛筛选这些10–50 cm的土壤样品,并对每层中发现的残留物进行计数,同时十个炉床测量并挖掘了(1-10号)裸露并散布在研究区域地面上的DJCN 3-2-2剖面。该剖面是从该站点东南约2 m处的当地沉积地层收集的。剖面约100厘米厚,根据沉积物的岩性和颜色,确定了两个主要的地层单元。在0至90厘米之间,地层由浅黄色黄土组成,在该处有两个埋藏的富含木炭的文化层。分别为24–28厘米和30–32厘米;而在d的较低层90-100厘米的深处是蓝灰色湖相沉积物。沿断面以2 cm的间隔收集了45个样品,分别用于测量颗粒大小,磁化率,花粉,木炭和真菌孢子;从田间的炉膛和烧过的土壤中,采集了三个木炭样品(DJCN 3-2-2 C1,从美国佛罗里达州迈阿密市Beta Analytic公司进行的AMS14C测年收集了分别来自烧过的土壤(分别为5号和8号炉台)的DJCN 3-2-2 C2和DJCN 3-2-2 C3。 。通过使用Calib REV 7.0.2程序(Stuiver andReimer,1993)的IntCal 13校准曲线(Reimeret等,2013)将AMS14C日期进一步转换为日历年值。青海师范大学自然地理与环境过程。光谱仪(ICP-MS)。未暴露的中间部分用于测量等效剂量(De)。我们还使用自动RisøTL / OSL-DA-20-C / Dreader获得了OSL测量值。实验室辐射使用90Sr / 90Y beta光源。样品制备包括分别用HCl(10%)和H2O2(30%)处理以去除有机物质和碳酸盐。通过湿筛分选择38至63 µm的颗粒,并用H2SiF6处理约2周。用水含量10±5%来计算年龄(Stauch等人,2012)。在青海师范学院青海省自然地理与环境过程重点实验室完成了粒度和磁化率的测定。粒度分析采用标准工艺,包括用HCl处理(10%)和H2O2(10%)分别去除碳酸盐和有机物质,以及用10 mL的10%(NaPO3)6处理分散剂并用超声波清洗机摇动以使颗粒充分分散(Lu and An,1997)。易感性是用英国Bartington生产的MS2双频磁化率仪进行分析。通过计算三个低频磁化率平均值与两个背景值的平均值之差获得低频磁化率值。对真菌孢子,木炭和花粉样品进行氢氟酸(HF)处理处理方法(Faegri和Iversen,1989; Moore等,1991)。将样品分别在10%HCl和10%KOH中煮沸以溶解钙质矿物质和腐殖质组分。然后将样品通过200 µm筛网过筛,并用40%HF处理以消解细小的二氧化硅。接下来,将样品过7 µm筛网以除去粘土大小的颗粒。最后,将样品储存并固定在甘油冻中。在400倍和1000倍的放大倍数下鉴定出花粉和真菌孢子。真菌孢子形态型的鉴定是基于与Van Geel(1978),Van Geel等人的描述和插图的比较。 (1989年,2003年,2011年),记录了每个样品的Van.300花粉和真菌孢子,并表示为总含量的百分比。花粉和真菌最初通过向样品中添加石蒜孢子片(27637±563孢子)来计算孢子浓度值,然后使用Tilia和Tilia-Graph软件制作图表(Grimm,2011年)。对木炭进行了计数,并将其分为两种类型,即20–100 µm和> 100 µm。
候光良
我们于2017年6月在青海湖盆地野外调查时发现尖嘴遗址(36.95°N,99.61°E;海拔3350m),并在地表选取1m×1.5m的样方,进行了小面积试掘。在深约为130cm的剖面中发现较丰富的动物碎骨、炭屑、石器及陶片等文化遗物。根据其结构特征可将其大致分为4层:第1层(0~30cm),为现代表土层,发育有现代高寒草甸土壤;第2层(30~85cm),为灰黑色粉砂质粘土层,该层中夹杂着大量炭屑,出土有陶片、兽骨、石器等文化遗物,其中骨头多为被敲碎的碎块,部分疑似为骨器;陶器与骨头(部分)有明显的火烧痕迹,石器为打制石器,技术较为粗糙,其岩性与就近的出露基岩一致,说明为就地取材;第3层(85~130cm),为砂黄土,土质较为疏松,其底部发育一薄层(约2~3cm厚)的浅红色古土壤,属原生沉积地层,人类活动干扰小;第4层(130cm以下),为基岩,未见文化遗物。本研究在整理鉴定时,参照的标本主要来自中国社科院考古研究所科技考古中心动物考古实验室和中国科学院古脊椎动物与古人类研究所的现生和古代动物标本,参阅《中国脊椎动物化石手册》,《动物骨骼图谱》等骨骼图谱。在动物骨骼、炭屑等文化遗物鉴定和采集完毕后,分别从剖面地层的45cm、75cm、75cm和87cm这4处层位依次选取了骨头、炭屑、骨头和炭屑4个测年样品(分别是A45B、A75C、A75B和A87C,见表1),送至美国Beta实验室进行加速器质谱(Acceleratormassspectrometry)AMS14C年代测定,获得的14C年代应用CalibREV702年代校正软件中的IntCali13树轮校正曲线将其校正为日历年。
候光良
依据前人研究成果,本文从国内外已发表的文献中搜集高原地层孢粉序列,遴选可靠记录,以期探讨该区的人类活动信息。选取原则为:(1)孢粉序列时间需涵盖中晚全新世(6.0kaBP.以来);(2)具有较好年代控制,序列以日历年或14C年时间体系定量表达;(3)具有较高的分辨率;(4)序列地域分布需覆盖整个高原及其各分区。根据上述原则,选取了本区28条地层化石孢粉序列。年代校正:28条序列中有些为日历年有些为碳14测年,因此对其进行校正成日历年。数据获取:对序列进行定量化,读取序列的孢粉含量数值与对应年代,为保证数据的有效性,优先选取拐点数据,序列分辨不足100年的时段,选取该时段平均的孢粉含量数据。从28条序列中共获取568条伴人孢粉记录。利用青藏高原28处地点的地层化石孢粉数据,提取计算并合成本区中晚全新世以来(6.0~2.0kaB.P.)的伴人孢粉记录。对从28处地层化石孢粉序列中提取的原始伴人孢粉记录,以序列为单位,运用离差法进行标准化处理,目的在于消除不同孢粉类型间的量纲差异,相互间可以进行对比,经标准化后的原始数据转换为标准化数值。然后计算每个分区每条记录的平均值,从而合成本区伴人孢粉记录,本文称其为伴人指数,其含义为指数愈高人类活动强度愈强,愈低则愈弱。
候光良
数据是根据已发表的甘青地区考古材料,统计了研究区内涵盖7个文化序列21处遗址点的发掘报告,其中甘肃遗址12处,青海遗址9处。运用数理统计方法对甘青地区新石器时代—青铜时代的罐、钵、盆、壶、尊、瓮、豆、碗、盘、杯、鬲、瓶、缸及甑等多种器物的数量、高度及组合进行了梳理。针对部分遗址存在多种文化遗存的情况,本文采用文化期重复统计的方法,最终确定某一文化类型的器物数据。运用数学统计分析方法,对整理所得的器物数据进行统计分析,并通过绘制变化趋势图来分析和判读数据间的相互关系;此外,对某一器物在所属文化序列中的数量比例、组合两项内容进行了计算和归纳,以此确保三者间的交叉验证,进一步揭示其变化特征,展示其变化规律。文章主要探讨这四种常用器型的演变状况,并结合甘青地区及其周边的古气候环境记录、考古资料等,分析可能影响陶器演变的因素。
候光良
本文所使用的数据为: 青藏高原范围与界线数据〔12〕; 中国科学院计算机网络信息中心国际科学数据镜像网站( http: / /www. gscloud. cn) 中的 90 m ×90 m 空间分辨率的 DEM 数据产品; 遗址数据主要基于全国第二次文物普查结果, 并结合相关省份文物地图集。在数据处理过程中, 首先确定遗址的具体位置,经纬度不详的遗址结合谷歌卫星地图加以判读; 其次, 参考中国文物普查认定标准进行分类、确定年代( 剔除年代不详的点) , 少量跨年代遗址重复计算,最后按照考古学、历史学、年代学体系的特点, 将研究区遗址按文化类型和历史学的综合划分法统计。GIS 和 RS 等在聚落和区域考古研究的应用也渐趋成熟。利用 GIS 方法中最短路径模拟出青藏高原史前交通路线,利用核密度估计法根据输入的要素数据集计算整个区域的数据聚集状况, 从而产生一个连续的密度表面。能直观地表现研究对象的分布概率, 核密度值的大小代表遗址点在空间分布上的集聚程度, 核密度估计值越大, 遗址点的分布密度越密。在通过平均最邻近指数测量每个要素的质心与其最近要素质心位置之间的距离, 计算所有最邻近距离的平均值, 并将其与假设随机分布中的平均距离进行比较,从 而判断研究要素是否为聚集分布。对属性在整个区域空间分布特征的描述, 用于判断研究区域某一要素或现象在空间是否具有聚集特性存在本文采用全局Moran’s I 指数来测度青藏高原遗址点的全局空间自相关程度。
候光良
本数据集中表土孢粉数据来源于东亚孢粉数据库(http://eapd.sysu.edu.cn/database/及青藏高原东北缘表土孢粉数据。表土孢粉点的降水数据取自青 藏 高 原 及 周 边(新疆、甘肃、四川部分地区)126个气 象站点1950-1980年 器 测 的 逐 年 年 平均降水数据(数据来自于中国气象科学数据共享服务网http://www.data.ac.cn/xiazai/)由于 地形对气候变化影响很大,因此在 ArcGIS中将分布不均匀的气象台站年均降水数据运用克里金空间插值法转变成青藏高原面上的栅格数据,表土孢粉点所在的降水栅格数据即可以认为是该点的降水实际数据。利用转换函数法选取代表性表土孢粉类型,建立它们与现代气候的线性回归,将化石孢粉组合代入回归关系式,即求得古气候参数。再利用现代类比法(MAT),假设过去植被类型与气候之间的关系是相对应的,将指示植被类型的地层孢粉谱与现代表土孢粉谱对比,揭示二者之间的相似性,再将其与对应点的现代降水数据进行矩阵运算,就能类比得到地层孢粉所对应的降水数据。
候光良
本文的数据有:(1)影响因子数据:90m分辨率DEM数据、中国1∶250000一级、三级、四级和五级河流分级数据集来源于中国科学院计算机网络信息中心国际科学数据镜像网站(http://www.gscloud.cn);中国1∶1000000植被类型空间分布数据(1971-2000年)、青海省1∶500000地质图、中国1∶4000000地貌图及青海省各级道路图来源于中国科学院资源环境科学数据中心(http://www.resdc.cn);多年平均降雨量数据(1971—2000年)来源于中国气象科学数据共享服务网(http://www.data.ac.cn);断层数据为全新世活动断层,来源于董治平等(1992)研究成果。(2)地质灾害数据:历史地质灾害数据(1∶100000)来源于青海省地质环境监测总站;省级重大地质灾害隐患点数据来源于青海省自然资源厅(http://zrzyt.qinghai.gov.cn)。(3)基础数据:人口数据来源于2010年国家统计局第六次人口普查结果;青海省1:250000分县数字化行政区划图来自国家基础地理信息中心(http://www.ngcc.cn)。本文结合信息量模型与熵值法,分别计算河湟谷地崩塌、滑坡、泥石流及综合易发性指数,从而对研究区进行易发性区划。采用信息量模型确定崩滑流地灾的易发性指数,在地质灾害易发性评价中,信息量模型将灾害点作为评价对象,而地质灾害的影响因子则是模型的评价指标,通过计算各因子易发性贡献度来评价其与研究对象的密切程度,信息量越高,则认为易发系数越高。
候光良
本数据集的遗址数据来源于甘肃省文物考古研究所和北京大学考古文博学院 2011 年编著出版的《河西走廊史前考古调查报告》。地图数据来源于国家科技基础条件平台 —— 国家地球系统科学数据共享服务平台( http://www.geodata.cn/),包括:中国 90 m 分辨率 DEM;中国 1 ∶ 250000 一级、三级、四级和五级河流分级数据集;中国 1 ∶ 4000000 植被数据集;中国 1 ∶ 100000 现状沙漠数据集。通过整理河西走廊考古调查资料,应用文化分布界值文化重心等方法综合分析该区古文化的时空演变过程,并应用 GIS技术提取相应遗址点现今的环境(高程、河流、植被和沙地)信息,结合古人类生产生活方式推测该区古今环境变化及其原因,并分析了该区域古文化演变的驱动机制。本数据集可直接为河西走廊地区遗址的古今演化提供一定的规律支撑。
候光良
青藏高原3km分辨率逐月平均风速格点数据是基于国家气候中心为长年代时间序列中尺度数值模拟气象要素库研发的,水平分辨率3 km×3 km,时间分辨率1小时,时间长度1995⁓2016年。数据库的建立采用WRF中尺度模式的二重嵌套数值模拟方法,外重网格格距9 km,范围覆盖多半个欧亚大陆;内重网格共有4个,格距3 km,覆盖全国陆地和海域,其中第4个计算区域覆盖青藏高原(图1)。WRF模式顶高度为10 hPa,垂直方向共36层,地面至200 m高度划分9层。模式中物理过程参数化方案包括:Thompson(外重网格)和WSM6 ( 内重网格) 微物理参数化方案;外重网格设置K-F积云参数化方案,第二重不设置用积云对流参数化方案;RRTM(Rapid RadiativeTransfer Model)长波辐射参数化方案;Dudhia短波辐射参数化方案;ACM2边界层参数化方案;Noah陆面参数化方案。数值模拟采用四维资料同化技术融入全球大气环流模式格点再分析资料(CFSv2)、OISST海表面温度资料、全国2400多地面气象站和160多探空气象站的定时观测资料。 2009年中国气象局建立了包括400座测风塔的全国风能资源专业观测网,其中70 m测风塔329座,100 m测风塔68座,120 m测风塔3座,在2008~2009年期间逐步建成,主要分布与中国风能资源较丰富的地区。课题组采用测风塔70 m高度上2009年1月至2010年12月期间一个完整年的逐小时风向风速观测数据对相同时段中尺度WRF模式逐小时输出的风速模拟结果(水平分辨率3 km×3 km)进行误差检验,剔除观测资料完整率小于90%和年平均风速小于3.8 m/s的测风塔,实际用于误差检验的测风塔共有354座,每座塔的样本数8700小时左右。测风塔实测风速与数值模拟风速的相对误差检验分析表明:49%的测风塔检验得到相对误差小于5%;28%的测风塔检验得到相对误差为5~10%;14.4%测风塔的相对误差为10~15%;5.6%测风塔的相对误差为15~20%;3%测风塔的相对误差大于20%。相对误差较大的测风塔主要分布于内陆地形复杂的山区和沿海山地。此外,全国范围内逐小时风速对比的相关系数为0.6,按照16方位分别进行平均的风速的相关系数为0.8,超过99.9%的统计显著性检验,说明数值模拟的风速时空变化特征与实测风速的变化一致。西藏没有测风塔,青海省共13座测风塔,其中6座塔的相对误差小于5%,3座塔相对误差5~10%,3座塔相对误差10~15%,1座塔15~20%。
朱蓉, 孙朝阳
本数据集是2017年7月,课题组在河南县和泽库县开展了野外植被样方调查和放牧家畜粪便样品采集工作。随机采集100 m×100 m区域内的同一种放牧家畜未风化的粪便5~10块,并混合为一个样品密封保存。共采集放牧家畜粪便样品49个,其中牦牛(Bosgrunniens)粪样品 30 个,马(Equus ferus caballus)粪样品11个,羊(Ovis aries)粪样品8个,对每个样点进行GPS定位,并记录取样点范围内植被群落和主要植被类型。每个样品取干重 2 g,样品处理前,每个样品加入 1 粒石松孢子片(27637±563 粒·片- 1)用以计算孢粉浓度。用10%的HCl除去钙质胶结,过200μm筛网除去较大粒径的植物残体,10%的 KOH 在 70 ℃下水浴除去有机质;再加入适量 40%的 HF 除去硅酸盐,最后在超声波振荡器中用7 μm的尼龙筛网富集孢粉,洗净后加甘油保存、制片。孢粉鉴定在400倍光学生物显微镜下进行并参考孢粉形态图谱和文献。应用 Tilia 软件绘制孢粉百分含量图。应用 Canoco5.0 软件对孢粉数据进行了主成分分析。本数据为评估青藏高原放牧家畜采食习性以及畜牧活动对区域植被的影响提供了新的研究思路和手段,也为今后在青藏高原开展考古遗址中保存的粪样品花粉分析,据此重建古植被群落和古人类生产活动信息,提供了重要的现代过程依据和借鉴资料。
候光良
1)数据内容:本数据集包含2010-2019年青藏高原地区30米分辨率叶面积指数遥感产品。2)数据来源及加工方法:利用Landsat时间序列数据和物理机理模型反演得到的年最大合成叶面积指数产品。3)数据质量描述: 利用模拟数据的验证结果表明,产品的root-mean-square error(RMSE)约为1.16。4) 数据应用成果及前景:叶面积指数高度综合了植被的水平覆盖状况和垂直结构,是植被冠层的重要结构参数,该数据集可为陆面过程模拟、资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序FVC产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的像元二分模型进行反演的,裸土的NDVI值设为0.01,纯植被的NDVI值设为0.88;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:植被覆盖度是生态学的重要参数,广泛应用于生态环境监测研究。
张兆明
本图片集主要包括西藏冬季鸟类的生态照片,拍摄时间为2020年12月,拍摄人为宋刚。主要涉及区域为拉萨、曲水等地,拍摄的鸟类物种有藏马鸡、高原山鹑、红嘴山鸦、大鵟、拟大朱雀、大草鹛、灰腹噪鹛、褐岩鹨、鸲岩鹨等。主要涉及陆禽类,游禽类,涉禽类,鸠鸽类,猛禽类和鸣禽类等,分布于高山草甸、灌丛,林地,河流,湖泊,湿地,农田等生境类型。物种鉴定人有中科院动物所宋刚、邢家华、乔慧捷,西藏自治区高原生物研究所杨乐、周生灵,西藏自治区自然博物馆益西多杰等人。
宋刚
数据采集时间为2020年1月至8月。在柴达木盆地南部沿着主风向自西向东共设置了8个采样点,选择的范围内两点间最远距离约为400公里,分别为小灶火气象站(XZH)、河西八连(HXB)、新华村(XHC)、格尔木市气象局(GEM)、宝库村(BKC)、诺木洪气象站(NMH)、巴隆乡(BLX)、都兰县气象站(DLX)。对收集的降尘中盐类矿物和化学成分进行测试,得到了柴达木盆地降尘可溶性矿物和水溶性离子含量数据。
张西营
青藏高原鸟类的分布数据信息,是2020年12月至2021年01月期间对青藏高原鸟类分布记录的野外调查数据,调查团队主要由中国科学院动物研究所,西藏高原生物研究所,中国科学院微生物研究所,西藏自然博物馆等单位的科研人员共同组成。主要区域为雅鲁藏布江中下游地区及纳木错湖东岸,包括拉萨、林芝、山南、日喀则等地市的多个县区(East: 88.09E,West: 94.52E,South: 28.76N,North: 30.77N)。观测方法以样线法,样点法,和多样点同步计数法为主。观测器材有双筒望远镜,单筒望远镜,长焦相机等。数据内容包括物种名、经度、维度、观测时间、观测人等信息。
宋刚
2019年7-8月,以青藏高原红原县为科考点,选取典型土地利用类型的草地和典型坡面设置样线,在植物样方调查后,对草地、灌丛、湿地生态系统土壤剖面(0-10 cm、10-20 cm、20-40 cm、40-60 cm和60-100 cm)采集土样,每个土层3个重复,采集土壤样品土壤环刀104个,测定了土壤的容重和含水量。通过各样线采样构成白河流域的面上采样点和空间数据集对生态系统生产、碳固定、水文调节和土壤保持等典型水土生态系统服务时空格局模型模拟,揭示流域尺度水土生态系统服务时空变化格局,结合气候变化、社会经济数据和生态环境保护政策实施、土地利用转变等因素。
胡健
2019年7-8月,以若尔盖高原东缘红原县为科考点,选取典型土地利用类型的高寒草地和典型坡面设置样线,沿山顶至山脚每隔50m,对草地和湿地生态系统的植物群落特征进行调查,样方大小为50cm×50cm,3个重复,共调查植物样方63个,获取了植物种数、数量、地上生物量、多样性指数等,生物量采用烘干法。为研究不同海拔梯度及不同草地类型植物生产力及群落变化规律提供可靠数据。准确定量高寒草灌植被变化对植物群落、植被演变将有助于青藏高原草地生态系统多目标的优化管理。
胡健
若尔盖高原1km年有效的能量与物质传输(EEMT)数据集(1980-2018)。有效的能量与物质传输(EEMT)与地球关键带的结构和功能密切相关。有效的能量与物质传输(EEMT)的单位是(Jm-2 s-1or W m-2)。将与有效的降雨能量物质传输相关的热能(EPPT)、净初级生产的能量物质传输(EBIO) 和有效的能量与物质传输(EEMT) (为EPPT和EBIO两者之和)作为综合气候指标,采用EEMTMODEL模型模拟的方法评估这三个指标,使用Anusplin插值软件获得EEMT 1km分辨率的空间数据集。
胡健
本数据包含辉钼矿Re-Os同位素测量数据、侵入岩的锆石U-Pb同位素测年、微量元素地球化学及Hf同位素数据,岩石全岩主微量地球化学及Sr-Nd同位素数据。样品采集自西藏南部冈底斯带泽当地区的桑布加拉矽卡岩型Cu-Au矿床,和山南地区克鲁矽卡岩型Cu-Au矿床。岩性包括闪长岩、黑云母花岗闪长岩。锆石的放射性同位素U-Pb年代学数据、微量元素地球化学及Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得。辉钼矿Re-Os同位素、岩石Sr-Nd同位素数据是通过多接收电感耦合等离子体质谱分析获得。通过所获得的数据,确定了冈底斯带白垩纪大规模岩浆活动也形成了Cu-Au矿床,明确了成矿岩浆与不成矿岩浆氧逸度、源区的差异。
梁华英
收集中国气象局气象数据共享中心1980-2018年的日气象数据,湿润度指数(HI)通过年降水与潜在蒸散发的比值计算,使用Anusplin插值软件获得HI 1km分辨率的空间数据集。通过空间数据收集对生态系统生产、碳固定、水文调节和土壤保持等典型水土生态系统服务时空格局模型模拟,揭示流域水土生态系统服务时空变化格局,结合气候变化、社会经济数据和生态环境保护政策实施、土地利用转变等因素,将权衡分析和结构方程模型结合定量这些水土生态系统服务的权衡与协同关系及其主要驱动力,为若尔盖湿地更加有效、更加科学的生态保护与多目标的土地利用优化管理提供理论支撑。
胡健
若尔盖高原1km逐月基于Penman-Monteith公式的潜在蒸散发数据集(1980-2018)。我们收集了中国气象局气象数据共享中心1980-2018年的日气象数据,通过Penman-Monteith方程计算日尺度潜在蒸散发,累加日尺度潜在蒸散发获得月、年潜在蒸散发(PET mm/月),通过Anusplin专业气象插值软件,各气象站点计算的多年年均温(MAT)和年均降水(MAP)插值获得1km分辨率的空间数据集。
胡健
该数据集包括2000–2009 和 2090–2099两个时段的NEX-GDDP (NASA Earth Exchange Global Daily Downscaled Projections)的每日最低气温(Tmin)、最高气温数据(Tmax)和降水量(PPT)数据(v1.0),日最高温和日最低温单位为K;降水量单位为kgm-2s-1;背景填充值为-999。 本数据集在原始数据基础上裁取青藏高原范围内像元,原始数据于2020年8月下载自 https://portal.nccs.nasa.gov/datashare/NEXGDDP/BCSD/。 NEX-GDDP数据集由CMIP5(Coupled Model Intercomparison Project Phase 5)历史气候和RCP(Representative Concentration Pathways)4.5情景模式下运行的大气环流模型(General Circulation Models)得到,共包括21个大气环流模型;其中 2000–2005为历史气候情景,2006–2009和2090–2099为RCP 4.5情景。原始数据相关说明请参见:https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp。
沈妙根, 姜楠
数据包含青藏高原2020年七月份大通河流域十个典型水电站,包括:多龙水电站、沟寺口水电站、金星水电站、卡索峡水电站、连城水电站、纳子峡水电站、石头峡水电站、天王沟水电站、铁迈水电站、学科滩水电站。该航拍图片资料有助于分析大通河流域水电开发的现状。数据由本次科考小组人员通过使用大疆无人机RTK系列和御系列进行航拍,并通过大疆制图软件拼接。航拍图像数据清晰度高,可明显观察到水电站大坝类型、上下游水体面积、引水工程等以及水电站周边地形和土地利用状况。数据可应用于青藏高原水电开发相关研究领域,提供实地图片以作参考。
傅斌
青海省典型小流域航拍数据集(Aerial photography dataset of typical small watersheds in Qinghai Province)来源于2020年7月第二次青藏高原科考,使用大疆无人机对青海省民和县小流域以及青海湖湖东地区地表样带进行航拍,包括正射影像(包含红绿蓝三个波段)、多光谱、点云数据。该数据集中的所有文件均可以用ArcGIS、ENVI软件直接打开查看、处理。
苏正安
四川省和西藏自治区典型小流域土壤养分数据集(2020)包含了采集的四川省和西藏自治区典型小流域的土壤养分实验实测数据。数据集来源于第二次青藏高原综合科学考察在四川省和西藏自治区部分小流域对草地、耕地、林地的野外调查,在采样点采集不同深度的土壤样品,后将土壤样品带回实验室通过相关的土壤理化实验记录了详细的土壤参数(包括有机碳、ph值、水分含量等),能够为小流域区溯源土壤水蚀、了解土壤环境和进行相关研究提供重要的参考。
苏正安
本数据包含侵入岩的锆石U-Pb同位素测年、微量地球化学及Hf同位素数据,岩石全岩主微量地球化学及Sr-Nd同位素数据。样品采集自西藏南部冈底斯带谢通门、加查、香巴塘、驱龙等地区。岩性以花岗质岩体为主,包括花岗山长岩、花岗闪长斑岩、石英闪长岩及石英闪长斑岩。锆石的放射性同位素U-Pb年代学数据,微量元素地球化学及Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得。岩石Sr-Nd同位素数据是通过多接收电感耦合等离子体质谱分析获得。通过所获得的数据,可以限定区域岩浆作用时代及岩浆氧逸度、源区组成等地球化学特征,分析是否有利于斑岩矿床形成。
梁华英
数据集记录青海省1978-2016年主要农作物产量信息,主要包括粮食、油料、水果、肉蛋和主要工业产品,铝、原油、钢铁、水泥和发电量等内容数据。数据集包含三个数据表(1、人均主要工农业产品产量数据表共有17个字段;2、分县农作物产量数据表共有13个字段;3、人均主要工农业产品产量和主要农产品产量数据表共有6个字段)。数据来源于:《青海社会经济统计年鉴》和《青海统计年鉴》,精度同数据所摘取的统计年鉴。该数据集对于研究青海省粮食安全、农业生产等方面具有重要价值。
苏正安
数据集记录了西藏自治区的耕地基本信息,包含两个数据表。其中,数据表1共有7个字段,数据表共有5个字段,分别记录了西藏自治区以及各区县1959~2016年的耕地面积、旱地面积、水田面积、有效灌溉面积、国家基建占地面积等内容,单位均为公顷。数据来源于:《西藏统计年鉴》、《西藏社会经济统计年鉴》,精度同数据所摘取的统计年鉴。该数据集对了解西藏自治区耕地情况、评价耕地利用水平、研究农业生产及粮食安全等方面有重要的价值。
苏正安
载畜状态指利用实际载畜量与合理载畜量计算的草地承载状态,即通常所有的超载、平衡和不超载。本数据集包括草地载畜量压力指数和草畜平衡指数两个产品,草地载畜量压力指数=实际载畜量/合理载畜量,草畜平衡指数=(实际载畜量-合理载畜量)×100%/合理载畜量,实际载畜量数据来源于《青藏高原实际载畜量数据集(2000-2019)》,合理载畜量数据,来源于《青藏高原合理载畜量数据集(2000-2019)》。本数据集可以分析青藏高原载畜状态的时空变化特征,提取过渡放牧区域,评估青藏高原超载强度,对青藏高原生态保护、监测及预警具有重要应用价值。
刘斌涛
实际载畜量指一定面积的草地,在一定的利用时间段内,实际承养的家畜数量。实际载畜量通过青藏高原各省(区)、市(州)的统计年鉴和畜牧管理部门提供的统计资料整理得到,在统计资料中有存栏量、出栏量、出栏率、年末牲畜数量等多种统计口径,本数据集根据各区域统计资料情况统一采用年末牲畜存栏量作为实际载畜量计算标准。利用统计年鉴中的实际载畜量与人口密度、NPP、地形起伏度进行多元线性回归,建立了实际载畜量空间化模型,得到实际载畜量(羊单位,MU/km2)栅格数据,时间序列为2000-2019年,空间分辨率为250米。利用青藏高原核心牧区的果洛州、玉树州、昌都市、那曲市、阿坝州、甘孜州、甘南州的统计资料验证表明,空间化的绝对误差平均为27.48 MU/km2,相对误差平均为13.79%。本数据集可以分析青藏高原实际载畜量的时空变化特征,评估青藏高原草地承载特征,提取过渡放牧区域,对青藏高原生态保护、监测及预警具有重要应用价值。
刘斌涛
合理载畜量又称理论载畜量,指一定的草地面积,在某一利用时间段内,在适度放牧(或割草)利用并维持草地可持续生产的前提下,满足家畜正常生长、繁殖、生产的需要,所能承载的最多家畜数量。青藏高原合理载畜量数据利用基于MODIS反演的可食牧草产草量(鲜重,kg/hm2)数据,按照《草地载畜量及草畜平衡计算规范》(DB 51/T1480—2012)、《天然草地合理载畜量的计算》(NY/T 635—2015)评估得到草地的合理载畜量(羊单位,MU/km2)数据,时间序列为2000-2019年,空间分辨率为250米。本数据集可以分析青藏高原草地合理利用情况下理论承载量的时空变化特征,评估青藏高原草地承载特征,提取过渡放牧区域,对青藏高原生态保护、监测及预警具有重要应用价值。
刘斌涛
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件