青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
湖泊沉积物是重建过去气候变化的重要代用材料,其中沉积物的年代框架是基础。纹层是湖泊沉积物中成对形成的一种沉积层,通常一年为一个周期。依托中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”和第二次青藏高原综合科学考察研究等研究计划,作者在青藏高原中部湖泊江错获取了长达1米的沉积物重力钻岩芯,发现保存完好的纹层。随后制作了岩芯薄片并对纹层及其厚度进行计数和测量,得到了从公元81年到2015年的年代序列。利用纹层厚度中粗颗粒层厚度百分比这一代表降水的指标重建了过去2000年这一地区的降水。高分辨率高精度的年代和降水记录可以提供可靠的气候环境变化的背景,对古气候模拟和古文明的兴衰等提供参考。
侯居峙
这组数据是2000-2014年间藏东南易贡藏布东段71条冰川的年均冰储量变化数据集,采用ESRI SHP矢量多边形数据格式存储。每条冰川的冰储量变化通过SRTM DEM、Dh2000-2014、冰川专题矢量数据(CGI2/TPG1976/RGI6.0)与冰密度 850 ± 60 kg m−3计算而得。Dh2000-2014基于一对2014年2月7日TSX/TDX SAR影像与2000年SRTM DEM数据,采用差分干涉技术(D-InSAR)获取。基于CGI2/TPG1976/RGI6.0提取区域冰川矢量数据与冰川编号。SRTM DEM是参考DEM与基准DEM,在数据统计中用于划分不同海拔范围,其空间分辨率为30m。属性表中包括的数据项有:GLIMS-ID表示冰川编号、Area表示冰川面积(m2)、EC_m_a-1表示2000-2014年期间每条冰川的年均冰面高程变化(m a-1)、MB_m w.e.a-1表示2000-2014年期间每条冰川的年均物质平衡变化(m w.e.a-1)、MC_m3 w.e.a-1表示2000-2014年期间每条冰川的年均冰储量变化(m3 w.e.a-1)、MC_Gt.a-1表示2000-2014年期间每条冰川的年均冰储量变化(Gt a-1)、Uncerty_EC是每条冰川冰面高程变化的误差(±m a-1)、Uncerty_MB是每条冰川物质平衡误差(±m w.e. a-1),UT_MCm3w.e. a-1是每条冰川冰储量变化误差(±m3w.e. a-1)。该组数据可用于藏东南地区冰川消融水文水资源效应研究。
叶庆华
该数据集包含了2019年05月01日至2019年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站的物候相机观测数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为2592*1944,本数据集中的物候照片是在每天12:10拍摄的,拍摄时间误差在±10 min。图片命名方式为BSDCJZ BEIJING_IR_Year_Month_Day_Time.
李小雁
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
This is a dataset of treeline shift rates including 143 alpine treeline sites in the Northern Hemisphere. It gives the following information for each treeline site: treeline form, study site, latitude, longitude, reference, tree species, elevation, study period and annual mean elevational shift rate (m/yr).
LU Xiaoming, Eryuan Liang
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
这组数据是1974-2017年期间希夏邦马峰地区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2017年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX 2017(DH2000-2017)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2017数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2017。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2017年间年均冰面高程变化误差为±0.11 m,大地测量物质平衡误差为±0.10 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Area_m2是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2017表示2000-2017年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2017表示2000-2017年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2017表示2000-2017年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3w.e. a-1)。 Ut_EC00_17,是2000-2017年冰面高程变化误差,Ut_MB00_17,每条冰川2000-2017年冰川物质平衡误差(m w.e. a-1),Ut_MC00_17是每条冰川2000-2017年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉希夏邦马峰地区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
这组数据是1974-2014年期间尼泊尔Ponkar冰川区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2014年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX2014(DH2000-2014)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2014数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2014。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2014年间Ponkar冰川区年均冰面高程变化误差为±0.13 m,大地测量物质平衡误差为±0.11 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Gla_area是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2014表示2000-2014年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2014表示2000-2014年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2014表示2000-2014年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3 w.e. a-1)。 Ut_EC00_14,是2000-2014年冰面高程变化误差,Ut_MB00_14,每条冰川2000-2014年冰川物质平衡误差(m w.e. a-1),Ut_MC00_14是每条冰川2000-2014年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉南坡Ponkar冰川区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
利用2004年2月至2008年10月ICESat R633卫星测高数据使用重复轨道平面拟合方法,获取南极Lambert Glacier/Amery Ice Shelf system区域的高程变化,使用IJ05 R2模型进行GIA 改正、投影面积变形改正,进而得到 30km*30km 分辨率的表面高程变化率,通过粒雪密度模型将结果转换为物质变化,和重力卫星 GRACE 重力卫星时变模型所得南极物质变化进行比较。
谢欢, 李荣兴
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
本数据集为2019年祁连山地区人类活动数据。以祁连山地区的矿山开采、违规房屋整改、新增道路、土地平整及生态修复等资料为基础,通过高分辨率遥感影像,对比统计前后变化地块。对祁连山地区地类发生变化的地块,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2019年祁连山地区矿山开采、违规房屋整改、新增道路、土地平整及生态修复等属性信息,统一进行图斑及其属性的录入和编辑,形成2019年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为2019年祁连山人类活动监测提供数据支撑。
祁元, 张金龙, 周圣明, 李娜, 王宏伟
本数据集包含国际脆弱生态系统国家公园遴选标准及其数据库,选取美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国为代表,具体内容包括: 表一包括:不同级别的遴选标准,其中包括第一层级的指标4个,第二层级的指标16个,第三层级的指标72个; 表二包括:美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国家的国家公园清单及相关信息,选取指标包括所属国家、国家公园名称、受保护时间与监理时间、面积、描述、IUCN管理类型、治理类型、管理机构、国际标准。
裴惠娟
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件