该数据集包含了黑河流域地表过程综合观测网中游大满站的大孔径闪烁仪通量观测数据。中游大满站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为BLS900的接收端和RR-RSS460的发射端,南塔为BLS900的发射端和RR-RSS460的接收端。观测时间为2019年1月1日至2019年12月31日。站点位于甘肃省张掖市大满灌区内,下垫面是玉米、果园和大棚,以玉米为主。北塔的经纬度是100.3785E,38.8607N,南塔的经纬度是100.3685E,38.8468N,海拔高度约1556m。大孔径闪烁仪的有效高度24.1m,光径长度是1854m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器维修、供电不足和信号问题,大孔径闪烁仪数据缺失的日期为:2019.01.22-2019.01.24;2019.03.01-2019.04.26;2019.08.05-2019.08.07;2019.10.28-2019.10.31;2019.11.29-2019.12.21。 关于发布数据的几点说明:(1)中游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H:感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
本数据集为青海可可西里地区气候要素数据集,涵盖十四个观测站点数据,详细记录了1990年的各项气候观测数据。青海可可西里地区地势高亢,平均海拔在5000m以上,气候寒冷,空气稀薄,自然环境恶劣,广大地区至今仍为无人区,有“人类禁区”之称。该区由于受到人类活动的干扰较小,大部分地区仍保持着原始的自然状态,其特殊的地理位置、地壳结构和自然环境以及特有的生物区系组成等,一直为国内外科学界所注目。该数据集原始数据数字化自《青海可可西里自然环境》一书,气候观测数据具体包括太阳辐射、温度、降水、气压、风速等。本数据集对于研究青海可可西里地区提供了基础数据,对于相关领域的研究具有参考价值。
李炳元
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
在使用三维变分方法进行资料同化时,需要利用误差协方差来确定背景场和观测各自的贡献。其中,背景场误差协方差不仅取决于所用的大气预报模式(如分辨率、参数化方案等),还取决于开展模拟的区域。本数据基于天气预报与研究(WRF)模式,通过对中亚大湖区(27公里水平分辨率)进行2017年一整年的模拟,使用NMC方法估计得到。其中包含的变量为流函数、速度势函数、温度、相对湿度和地表气压。本数据可应用于基于WRF模式开展的中亚大湖区资料同化研究与应用。
姚遥
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网中游大满超级站涡动相关仪观测数据。站点位于甘肃省张掖市大满灌区内,下垫面是玉米。观测点的经纬度是100.37223E, 38.85551N,海拔1556.06m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
植被光合作用是陆地生态系统碳循环的关键组成部分,模拟不同时空尺度上的光合作用活动有助于解决陆地碳收支的难题,也是准确预测未来气候变化方向的重要途径和科学认识陆地生态系统对人类社会可持续发展支持能力的重要前提。目前,虽然多种估算生态系统总初级生产力(GPP)的算法和产品已经相对较为成熟,但是长时间序列的全球GPP产品仍存在较大的差异和不确定性,尤其是其时间变化趋势。日光诱导叶绿素荧光(SIF)遥感是近年快速发展起来的新型遥感技术,SIF与光合过程的紧密联系使得其成为指示植被光合变化的有效探针,也是监测GPP强有力的手段。基于遥感数据获取的一种新型植被指数(NIRv),即归一化植被指数NDVI与近红外波段反射率的乘积,与遥感SIF产品高度相关;基于机理推导、模型模拟和遥感数据的分析结果均显示,NIRv可以作为SIF的替代产品,用于估算全球GPP。 因此,在分析了NIRv作为SIF和GPP探针的可行性基础上,本数据集基于长达40年左右的遥感AVHRR数据和全球数百个通量站点观测,生成了1982-2018年的全球高分辨率长时间序列GP数据,并分析了全球GPP的时空变化趋势,其分辨率为月,0.05度,数据单位为gC m-2 d-1,多年平均的全球GPP大约为128.3 ± 4.0 Pg C yr−1,基于地面通量站点的检验结果表明该数据的均方根误差(RMSE)为1.95 gC m-2 d-1。该数据集可用于全球气候变化和碳循环的相关研究。
王松寒, 张永光
为研究蔓菁的扩散与人类活动之间的关系,我们将来自青藏高原及周边区域,以及巴基斯坦,印度,尼泊尔,德国,日本等地的蔓菁品种进行重测序,同时对基因家族进行聚类,以及特有、共有基因和基因家族统计,此外还将进行基因家族扩张收缩分析,系统发育树的构建,全基因组复制事件等分析。目的是解析人类活动和区域气候环境双重压力下,高原各地的传统蔓菁品种适应高原的分子基础。因此这项研究有助于揭示蔓菁适应高原生态环境的适应性机制以及在进化过程中人工驯化和人类选择对其遗传分化的影响。
段元文
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
本数据集来源于论文:Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 数据为该论文的补充数据,主要包含研究人员搜集的棕榈化石记录,与伦坡拉盆地棕榈化石相近的棕榈属的气候范围数据,以及伦坡拉盆地化石与现代棕榈属化石的形态比较数据。 2016年,研究团队在青藏高原中部伦坡拉盆地(32.033°N, 89.767°E)发现了保存较为完好的棕榈化石,将其与已有的棕榈化石进行了比较,发现它和已有的棕榈化石形态都不相同,因此,研究人员建立了一个新种——西藏似沙巴棕(<em>Sabalites tibensis</em> T. Su et Z.K. Zhou)。研究人员利用棕榈化石结合古气候模型重建了青藏高原中部的古高程,得出结论:新近纪之前青藏高原还没有出现。 数据中包含的表格如下: (1)Table S1. Fossil records of palms around the world(世界范围内的棕榈化石记录) (2)Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera(伦坡拉盆地化石与现代棕榈属化石的形态比较数据) (3)Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to S. tibetensis T. Su et Z.K. Zhou sp. nov.(与新发现的西藏似沙巴棕化石(<em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov)形态最接近的12个现存棕榈属的气候范围) 数据也包含论文补充数据中的图形数据。
苏涛
中亚农业水资源脆弱性数据集基于气象、土地覆盖、地形和社会经济数据, 依据脆弱性概念框架, 从暴露度、敏感度和适应度 3 个方面选取 18 个指标, 建立了农业水资源脆弱性评价指标体系, 采用等权重法和主成分分析法确定指标权重, 对中亚农业水资源脆弱性进行了评价及特征分析。对部分原始各个栅格数据进行比较,从原始目标栅格最左上角开始,依次向相邻的右、下栅格延伸,四个栅格(即0.5°)取中位数合并为一个栅格,并且该中位数作为四个栅格中心点对应的地理坐标的数值,消除栅格间的极端数值情况。数据提供了1992-1996、1997-2001、2002-2006、2007-2011、2012-2017和1992-2017六个时间段,空间分辨率为0.5°乘以0.5°。数据集可为中亚五国农业水资源供需和开发利用分析等提供基础数据支撑。
李兰海, 于水
数据内容:包含青藏高原湖泊采集点,钩虾遗传多样性图,项目对青藏高原及其周边地区620个溪流湖泊开展钩虾样品采集并开展了遗传多样性研究,以期为青藏高原湖泊水资源和生物多样性保护提供基础资料。 数据来源及加工方法:本数据集为第一手数据,自主产生。本数据集中标本采集点为项目组2017至2020年在青藏高原开展了4次采集考察所获得。分子数据是对采集标本提取COI序列,作为分子证据,开展遗传多样性分析;主要仪器为PCR仪,型号为Mastercycler X50s,厂家为eppendorf。 数据质量描述:数据集基本覆盖了青藏高原,并增加青藏高原周边地区的样品。 数据应用成果及前景:为生物多样性保护提供基础数据。
侯仲娥
本数据集为伊朗扎格罗斯前陆盆地库姆剖面的古地磁数据。 数据集背景:伊朗高原位于新特提斯构造域中部,新生代以来在阿拉伯-亚洲板块的碰撞背景下,伊朗中部经历了陆源海的消失过程,探究这一过程可为探讨板块碰撞及全球海平面升降提供新的数据支持。 数据集介绍:我们选择伊朗中部格罗斯前陆盆地的库姆剖面为研究对象,两个剖面共厚2200余米,获得古地磁样品356块。经过系统的古地磁退磁,最终获得263块样品的特征剩磁,并用以建立剖面的磁性地层。结合剖面所含的凝灰质砂岩提供的U-Pb年代约束,磁性地层结果显示剖面年代为17.5-11.5 Ma。结合剖面海相地层分布,可知该区最终海退时代约为16.8 Ma。
孙继敏
粘土矿物是母岩在特定气候下经一系列化学作用而形成的产物,是用来重建区域古化学风化历史的常用指标。本研究利用X射线衍射法对伦坡拉盆地的伦坡日剖面(21-15 Ma)的76个沉积物开展了系统的粘土矿物学研究。结果显示该剖剖面伊蒙混层、伊利石、绿泥石、和高岭石等最常见的几种粘土矿物类型。在整个剖面中,伊蒙混层矿物和伊利石含量最多,总含量可占粘土总量的80-90%;而高岭石和绿泥石含量相对较低,约占粘土矿物总量的10-20%。而从长期变化趋势来看,伦坡日剖面各类粘土矿物含量的变化相对稳定,从而揭示出区域的化学风化强度在该时段变化较小。
叶程程
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
数据内容:国内生产总值(GDP) 年度统计(1990-2019)、国内生产总值(GDP) 季度累计统计(1990-2019)及地区生产总值(2010-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)宏观经济原始数据,通过数据整理、筛选及清洗得到1990-2019年中国地区(包括第三极)宏观经济数据集,数据以Microsoft Excel (xlsx)格式存储。
傅文学
数据内容:对外经济贸易_货物进出口总额(1952-2019) 及对外经济贸易_按贸易分进出口总额(1981-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)对外贸易及投资原始数据,通过数据整理、筛选及清洗得到1952-2019年中国地区(包括第三极)对外贸易及投资数据集,数据起始时间为1952年至2019年,Microsoft Excel (xlsx)格式。
傅文学
数据内容:国民经济_工业增加值(月度)(2010-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)工业经济原始数据,通过数据整理、筛选及清洗得到2010-2019年中国地区(包括第三极)工业经济数据集,数据起始时间为2010年至2019年,Microsoft Excel (xlsx)格式。
傅文学
"一带一路"亚洲关键区域流域边界图的划定主要依据以下原则: 原则1:在丝绸之路沿线 原则2:位于干旱半干旱区 原则3:具有较高的水资源风险 原则4:流域完整性 1. 干旱区划分依据 Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). (Latest update: 04 Jun 2015) Accessed (6 Mar 2018). URI: http://data.fao.org/ref/221072ae-2090-48a1-be6f-5a88f061431a.html?version=1.0 2. 水资源风险数据: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao. 2014. Aqueduct Global Maps 2.1. Working Paper. Washington, DC: World Resources Institute. 3. 贫困指数数据: Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. https://www.ngdc.noaa.gov/eog/dmsp/download_poverty.html 4. 基础流域边界数据: (1) Watershed boundaries were derived from HydroSHEDS drainage basins data (Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator), which can be free download via https://hydrosheds.cr.usgs.gov/hydro.php (2) AQUASTAT Hydrological basins: This dataset is developed as part of a GIS-based information system on water resources. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations. The map is also available in the SOLAW Report 15: “Sustainable options for addressing land and water problems – A problem tree and case studies”. Data can be free download via http://www.fao.org/nr/water/aquamaps/ (3) HydroBASINS: https://www.hydrosheds.org/downloads 5. The GloRiC provides a database of river types and sub-classifications for all river reaches globally. https://www.hydrosheds.org/page/gloric 6. HydroATLAS offers a global compendium of hydro-environmental sub-basin and river reach characteristics at 15 arc-second resolution. https://www.hydrosheds.org/page/hydroatlas 覆盖面积146.94万平方公里,具体包含如下区域:怒江流域,死海流域,锡斯坦河流域,黄河流域,约旦-叙利亚东部流域,印度河流域,伊朗内流区,乌尔米耶湖流域,石羊河流域,哈里卢德-穆尔加布河流域,两河流域,疏勒河流域,黑河流域,伊塞克库尔湖,塔里木河流域,吐鲁番-哈密盆地,艾比湖流域,准噶尔盆地,阿姆河流域,玛纳斯河流域,乌伦古河流域,额敏河流域,楚河-塔拉斯河流域,锡尔河流域,伊犁河流域,里海流域,澜沧江流域,长江流域,青海湖水系,柴达木盆地东部,柴达木盆地西部,羌塘高原区,雅鲁藏布江流域.
冉有华, 王磊, 曾甜, 盖春梅, 李虎
黄河源多年冻土分布数据是基于黄河源区多年冻土年均地温模型而建立的,以年平均地温0℃作为划分季节冻土和多年冻土的标准和界限。与目前可利用的黄河源区冻土分布图有青藏高原冻土图(1:300万)和青藏高原多年冻土本底调查项目完成的青藏高原冻土分布图(1:100万)相比,该数据集基于黄河源区实测数据,与实测数据有更高的吻合性,冻土分布图的模拟精度也最高。该数据集可用于黄河源区多年冻土分布研究的验证,也可用于冻土环境等方面的研究。
盛煜, 李静
本数据集包括祁连山区域1985-2019年的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定规则提取不同地物,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法,生产出1985-2019年的土地覆盖分类产品。对分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,能够在长时间序列上反映更多的土地覆盖类型变化信息。其中,1985-2015年的土地利用产品为5年1期,2015-2019年的土地利用产品为1年1期。
杨爱霞, 仲波, 角坤升, 吴俊君
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件